Answer: Option (b) is the correct answer.
Explanation:
The given data is as follows.
mass = 0.508 g, Volume = 0.175 L
Temperature = (25 + 273) K = 298 K, P = 1 atm
As per the ideal gas law, PV = nRT.
where, n = no. of moles = 
Hence, putting all the given values into the ideal gas equation as follows.
PV =
1 atm \times 0.175 L =
= 71.02 g
As the molar mass of a chlorine atom is 35.4 g/mol and it exists as a gas. So, molar mass of
is 70.8 g/mol or 71 g/mol (approx).
Thus, we can conclude that the gas is most likely chlorine.
From the equation;
4 Al + 3 O2 = 2 Al2O3
The mole ratio of Oxygen is to Aluminium hydroxide is 3:2.
Therefore; moles of Al2O3 is
(0.5/3 )× 2 = 0.333 moles
Therefore; The moles of aluminium oxide will be 0.333 moles
Answer:
C
Explanation:
If you add enough heat to a solid it eventually becomes a liquid