Answer: (a) pH = 4.774, (b) pH = 4.811 and (c) pH = 4.681
Explanation: (a) pH of the buffer solution is calculated using Handerson equation:

pKa for acetic acid is 4.76. concentration of base and acid are given as 0.95M and 0.92M. Let's plug in the values in the equation and calculate the pH of starting buffer.

pH = 4.76 + 0.014
pH = 4.774
(b) When 0.040 mol of NaOH (strong base) are added to the buffer then it reacts with 0.040 mol of acetic acid and form 0.040 mol of sodium acetate.
Original buffer volume is 1.00 L. So, the original moles of sodium acetate will be 0.95 and acetic acid will be 0.92.
moles of acetic acid after addition of NaOH = 0.92 - 0.040 = 0.88
moles of sodium acetate after addition of NaOH = 0.95 + 0.040 = 0.99
Let's again plug in the values in the Handerson equation:

pH = 4.76 + 0.051
pH = 4.811
(c) When 0.100 mol of HCl are added then it reacts with exactly 0.100 moles of sodium acetate(base) and form 0.100 moles of acetic acid(acid).
so, new moles of acetic acid = 0.92 + 0.100 = 1.02
new moles of sodium acetate = 0.95 - 0.100 = 0.85
Let's plug in the values in the equation:

pH = 4.76 - 0.079
pH = 4.681
Answer:
0.2193 μm
Explanation:
The reaction showing the Photodissociation of ozone (O3) is given below as:
O₃ + hv --------------------------> O₂ + O⁺
H° (142.9) (0) (438kJ/mol).
The first thing to do here is to determine the change in the enthalpy of the total reaction, this can be done by subtracting the change in the enthalpy of the reactant from the change in enthalpy in the product. Hence, we have:
ΔH° = [438 kJ/mol + 247.5 kJ/mol] - (142.9) = 542.6 KJ/mol.
This value, that is 542.6 KJ/mol will then be used in the determination of the value for the maximum wavelength that could cause this photodissociation.
Therefore, the maximum wavelength could cause this photodissociation ≤ h × c/ E = [ 1.199 × 10⁻⁴]/ 542.6 = 2.193 × 10⁻⁷ = 0.2193 μm
Because the modern periodic table is according to icnreasing atomic numbers.Ar has the atomic number 18 and potassium 19 so Argron is placed before K in the Modern periodic table.
the best answers its A. Maxwell I just took the the test
hope this help :)