Au^2S^3+ 3H^2 = 2Au + 3H^2S
Answer:

Explanation:
Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution. It is represented as
The equation for the ionization of magnesium phosphate is given as:
When the solubility of
is S moles/liter, then the solubility of
will be 3S moles\liter and solubility of
will be 2S moles/liter.
Thus S = 0.173 g/L or

The answer is: emitted gas is carbon dioxide (CO₂).
Neutralization is is reaction in which an acid (in this example vinegar or acetic acid CH₃COOH) and a base (in this example soda)
Balanced chemical reaction of vinegar and antacid:
CH₃COOH(aq) + NaHCO₃(aq) → CH₃COONa(aq) + H₂O(l) + CO₂(g).
Sodium acetate (CH₃COONa) is a salt.
Sodium bicarbonate (NaHCO₃) is an antacid. Sodium bicarbonate is the active ingredient in baking soda.
Answer:
pH = 2.66
Explanation:
- Acetic Acid + NaOH → Sodium Acetate + H₂O
First we <u>calculate the number of moles of each reactant</u>, using the <em>given volumes and concentrations</em>:
- 0.75 M Acetic acid * 50.0 mL = 37.5 mmol acetic acid
- 1.0 M NaOH * 10.0 mL = 10 mmol NaOH
We<u> calculate how many acetic acid moles remain after the reaction</u>:
- 37.5 mmol - 10 mmol = 27.5 mmol acetic acid
We now <u>calculate the molar concentration of acetic acid after the reaction</u>:
27.5 mmol / (50.0 mL + 10.0 mL) = 0.458 M
Then we <u>calculate [H⁺]</u>, using the<em> following formula for weak acid solutions</em>:
- [H⁺] =

Finally we <u>calculate the pH</u>: