7<span> to 49 10 to 100. 30 Secs. 3. What is the </span>pH<span> value of pure </span>water<span>? 0 3 </span>7<span> 10 ... How do acids </span>taste<span>? </span>bitter sour<span> sweet salty. 30 Secs. </span>7<span>. How do </span>bases taste<span>? </span>bitter<span> ... 8. Which kind of solution would react with a metal? acidic basic </span>neutral water<span> ... cocoa </span>has<span> a </span>bitter taste<span>. It is most likely which of the following? acid </span><span>base neutral</span>
The balanced chemical reaction is given as follows:
<span>2 KClO3(s) → 2 KCl(s) + 3 O2(g)
The starting amount of the reactant are given above. These values would be used for the calculations. We do as follows:
</span>2.72 g KClO3 (1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 1.06 g O2
<span>
0.361 g KClO3 </span>(1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 0.14 g O2
<span>
83.6 kg KClO3 (1000g / 1kg) </span>(1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 3275.76 g O2
<span>
22.5 mg KClO3</span> (1 g / 1000 mg) (1 mol / 122.50g )( 3 mol O2 / 2 mol KClO3 ) ( 32 g O2 / 1 mol O2 ) = 0.009 g O2
Explanation:
The given precipitation reaction will be as follows.

Here, AgCl is the precipitate which is formed.
It is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
It is given that volume is 1.14 L and molarity is 0.269 M. Therefore, calculate number of moles as follows.
Molarity = 
0.269 M = 
no. of moles = 0.306 mol
As molar mass of AgCl is 143.32 g/mol. Also, relation between number of moles and mass is as follows.
No. of moles = 
0.307 mol = 
mass = 43.99 g
Thus, we can conclude that mass of precipitate produced is 43.99 g.