<span>b)Determine your horisontal distance from window (ans. 1.5 m)
c)Calc the speed of ball as you catch it (ans: 8.2m/s)
I dont get what 42 m below the horizontal is, can someone give me direction on how to do this?
</span>
Answer:
m≈501.57 g
Explanation:
The density formula is:
d=m/v
Let’s rearrange the formula for m. m is being divided by v. The inverse of division is multiplication, so multiply both aides by v.
d*v= m/v*v
d*v=m
The mass can be found by multiply the density and the volume.
m=d*v
The density is 1.06 grams per milliliter and the volume is 473.176 milliliters.
d= 1.06 g/mL
v= 473.176 mL
Substitute the values into the formula.
m= 1.06 g/mL * 473.176 mL
Multiply. When multiplying, the mL will cancel out.
m= 501.56656 g
Let’s round to the nearest hundredth. The 6 in the thousandth place tells us to round the 6 to a 7 in the hundredth place.
m ≈501.57 g
The mass is about 501.57 grams.
Answer:
96046 Ns.
Explanation:
We shall represent velocity in vector form considering east direction as + ve x axis and north as + y direction.
40 km/h in the east
V₁ = 40 i
V₂ = 50j
momentum p₁ = mV₁
= 1500 X 40 i
= 60000 i
Momentum p₂ = mV₂
= 1500 X 50j
= 75000 j
Change in momentum
p₂ - p₁
75000j - 60000i
Magnitude of change
= 
= 96046 Ns.
Answer: 361° C
Explanation:
Given
Initial pressure of the gas, P1 = 294 kPa
Final pressure of the gas, P2 = 500 kPa
Initial temperature of the gas, T1 = 100° C = 100 + 273 K = 373 K
Final temperature of the gas, T2 = ?
Let us assume that the gas is an ideal gas, then we use the equation below to solve
T2/T1 = P2/P1
T2 = T1 * (P2/P1)
T2 = (100 + 273) * (500 / 294)
T2 = 373 * (500 / 294)
T2 = 373 * 1.7
T2 = 634 K
T2 = 634 K - 273 K = 361° C
I think it’s the third one idk tho