Answer:
M. A change that causes the gene to increase the amount of lactase ir produces will increase a person's ability to break down lactose
Explanation:
Lactose is a sugar found in dairy products. Humans require an enzyme, called lactase, to break down the sugar in the body. This enzyme is produced by the lactase gene.
Some people have some variation in their gene that means they do not produce very much lactase. This means they do not produce sufficient amount of the enzyme to break down the sugar lactose found in milk. This causes them to feel ill and get abdominal pain when they eat dairy, because their body can't break down the sugar.
Therefore, a change in the gene that causes it to produce more lactase will make people more able to consume lactase. A change that decreases the amount of lactase enzyme will have the opposite effect.
The source of protein and minerals found in dairy are not processed by lactase, so R is not correct.
Is there any possible chance that at some point in your science
studies, sometime before you were given this question for your
homework, that maybe you might have encountered this formula
for the period of a simple pendulum ?
Period = (2 pi) √(length/gravity) .
If the length is 0.23 meter, and the
acceleration of gravity is 9.8 m/s²,
then the period is
= (2 pi) √(0.23/9.8)
= 0.963... second (rounded)
That's how long it takes for a simple pendulum, 23cm long,
hanging on a massless string and not swinging too far to
the side, to complete one full swing left and right.
Now, if you can figure out how many periods of 0.963 second
there are in 30 seconds, you'll have your answer. I'll leave
that part of it to you.
Answer:
1110 N
Explanation:
First, find the acceleration.
Given:
Δx = 300 m
v₀ = 85.5 km/h = 23.75 m/s
v = 0 m/s
Find: a
v² = v₀² + 2aΔx
(0 m/s)² = (23.75 m/s)² + 2a (300 m)
a = -0.94 m/s²
Find the force:
F = ma
F = (1180 kg) (-0.94 m/s²)
F = -1110 N
The magnitude of the force is 1110 N.
Answer:
Explanation:
Well you have the voltages right, and that is no trivial matter. Each one of the resistors in a parallel circuit sees the same input voltages (in this case 6).
Now I think it would be a good idea to fill in the the resistance column.
R1 = 3 ohms
R2 = 6 ohms
R3 = 2 ohms
The total resistance can be calculated in two ways. I'll get around to doing both of them but I'll do the conventional way first. One hint: the total resistance must be smaller than the smallest resistor. Read that sentence over a couple of times. What it means is that it must be less than 2 ohms in a parallel circuit.
1/r1 + 1/r2 + 1/r3 = 1/rt
1/3 + 1/6 + 1/2 = 1/rt
Change all the denominators to 6ths.
2/6 + 1/6 + 3/6 = 1/rt
(2 + 1 + 3)/6 = 6/6 = 1
rt = 1
====================
So the current I is V/R
V = 6
R = 1
Current = V/R = 6/1 = 6 amps.
====================
The current in each resistor is
I1 = V / R1
I1 = 6/3 = 2 amps
I2 = V/R2
I2 = 6/6 = 1 amp
I3 = 6/2 = 3 amps
The total is I1 + I2 + I3 = 2 + 1 + 3 = 6 amps.
======================
Remember I said there was 2 ways of figuring out the total resistance. I did one of them about. Here's the other.
R = V / It
R = 6 / 6
R = 1 ohm just what you got before.
====================
Power
P = V * I
P1 = 6 * 2 = 12 watts
P2 = 6*1 = 6 watts
P3 = 6*3 = 18 watts
Pt = 36 watts.
Pt can be done by using the voltage * the total current
Pt = 6 volts * 6 amps = 36 watts, just what you would expect.
Answer:
Weight
Explanation:
The spring balance is used to measure weight of an object.