4 cos² x - 3 = 0
4 cos² x = 3
cos² x = 3/4
cos x = ±(√3)/2
Fixing the squared cosine doesn't discriminate among quadrants. There's one in every quadrant
cos x = ± cos(π/6)
Let's do plus first. In general, cos x = cos a has solutions x = ±a + 2πk integer k
cos x = cos(π/6)
x = ±π/6 + 2πk
Minus next.
cos x = -cos(π/6)
cos x = cos(π - π/6)
cos x = cos(5π/6)
x = ±5π/6 + 2πk
We'll write all our solutions as
x = { -5π/6, -π/6, π/6, 5π/6 } + 2πk integer k
(a) SSS (side side side)
every side on one triangle is correspondingly equal to that of the same side in the other triangle
Step-by-step explanation:
the answer is 49
I may not be correct
Answer:
and
Step-by-step explanation:
Note that if
then 
Functions
do not have vertical asymptotes at all.
Vertical asymptotes have functions
Functions
and
have the same vertical asymptotes (when
).
Functions
and
have the same vertical asymptotes (when
). See attached diagram