Answer:
There is not enough information to tell the answer to this problem.
Step-by-step explanation:
sorry
The slope of y = 3x - 4 on the interval [2, 5] is 3 and the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
<h3>How to determine the slope?</h3>
The interval is given as:
x = 2 to x = 5
The slope is calculated as:
![m = \frac{y_2 -y_1}{x_2-x_1}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7By_2%20-y_1%7D%7Bx_2-x_1%7D)
<u>16. y = 3x - 4</u>
Substitute 2 and 5 for x
y = 3*2 - 4 = 2
y = 3*5 - 4 = 11
So, we have:
![m = \frac{11 - 2}{5 - 2}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B11%20%20-%202%7D%7B5%20-%202%7D)
![m = \frac{9}{3}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B9%7D%7B3%7D)
Divide
m = 3
Hence, the slope of y = 3x - 4 on the interval [2, 5] is 3
<u>17. y = 2x^2-4x - 2</u>
Substitute 2 and 5 for x
y = 2 * 2^2 - 4 * 2 - 2 = -2
y = 2 * 5^2 - 4 * 5 - 2 = 28
So, we have:
![m = \frac{28 + 2}{5 - 2}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B28%20%20%2B%202%7D%7B5%20-%202%7D)
![m = \frac{30}{3}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B30%7D%7B3%7D)
Divide
m = 10
Hence, the slope of y = 2x^2-4x - 2 on the interval [2, 5] is 10
Read more about slopes at:
brainly.com/question/3605446
#SPJ1
Answer:
3x² + 8x - 9
Step-by-step explanation:
8x² - 5x² +x+7x-10+1
=3x² + 8x - 9
The answer for your problem is x = 26