9514 1404 393
Answer:
r = 1/9
Step-by-step explanation:
First of all, solve the equation for r:
y = rx
y/x = r . . . . . . . divide by x
__
Since r is a constant, it will be the same for any corresponding pairs of x and y. It is convenient to choose both x and y as integers, as in the third table entry.
r = y/x = 5/45
r = 1/9 . . . . . . . . . reduced fraction
_____
<em>Additional comment</em>
It is not a bad idea to check to see that this works with other values of x and y. For the first line of the table, we have x = 11:
y = rx = (1/9)(11) = 11/9 = 1 2/9 . . . . matches the table value
Answer:
You are more likely to win by playing regular defense.
Step-by-step explanation:
Assume out of 100 reviewed games, there were 50 regular defense games and 50 prevent defense games. And out of 50 regular defense games, 38 were win, 12 were lose. And out of 50 prevent defense game, 29 were win, 21 were lose.
Probability to win the game by playing regular defense is:
P(win | regular) = 38/50 = 0.76
Probability to win the game by playing prevent defense is:
P(win | prevent) = 29/50 = 0.58
Since the probability of winning by regular defense game is more than prevent defense game (0.76 > 0.58), you are more likely to win by playing regular defense.
We define variables:
x = represent the width of the field
y = represent the length of the field
We write the perimeter (with no fencing along the river):
2400 = 2x + y
We clear y:
y = 2400-2x
Answer:
an expression for the length of the field as a function of x is:
y = 2400-2x
The required proof is given in the table below:
![\begin{tabular}{|p{4cm}|p{6cm}|} Statement & Reason \\ [1ex] 1. $\overline{BD}$ bisects $\angle ABC$ & 1. Given \\ 2. \angle DBC\cong\angle ABD & 2. De(finition of angle bisector \\ 3. $\overline{AE}$||$\overline{BD}$ & 3. Given \\ 4. \angle AEB\cong\angle DBC & 4. Corresponding angles \\ 5. \angle AEB\cong\angle ABD & 5. Transitive property of equality \\ 6. \angle ABD\cong\angle BAE & 6. Alternate angles \end{tabular}](https://tex.z-dn.net/?f=%20%5Cbegin%7Btabular%7D%7B%7Cp%7B4cm%7D%7Cp%7B6cm%7D%7C%7D%20%0A%20Statement%20%26%20Reason%20%5C%5C%20%5B1ex%5D%20%0A1.%20%24%5Coverline%7BBD%7D%24%20bisects%20%24%5Cangle%20ABC%24%20%26%201.%20Given%20%5C%5C%0A2.%20%5Cangle%20DBC%5Ccong%5Cangle%20ABD%20%26%202.%20De%28finition%20of%20angle%20bisector%20%5C%5C%20%0A3.%20%24%5Coverline%7BAE%7D%24%7C%7C%24%5Coverline%7BBD%7D%24%20%26%203.%20Given%20%5C%5C%20%0A4.%20%5Cangle%20AEB%5Ccong%5Cangle%20DBC%20%26%204.%20Corresponding%20angles%20%5C%5C%0A5.%20%5Cangle%20AEB%5Ccong%5Cangle%20ABD%20%26%205.%20Transitive%20property%20of%20equality%20%5C%5C%20%0A6.%20%5Cangle%20ABD%5Ccong%5Cangle%20BAE%20%26%206.%20Alternate%20angles%0A%5Cend%7Btabular%7D)