Answer:
1. Complex number.
2. Imaginary part of a complex number.
3. Real part of a complex number.
4. i
5. Multiplicative inverse.
6. Imaginary number.
7. Complex conjugate.
Step-by-step explanation:
1. <u><em>Complex number:</em></u> is the sum of a real number and an imaginary number: a + bi, where a is a real number and b is the imaginary part.
2. <u><em>Imaginary part of a complex number</em></u>: the part of a complex that is multiplied by i; so, the imaginary part of the complex number a + bi is b; the imaginary part of a complex number is a real number.
3. <em><u>Real part of a complex number</u></em>: the part of a complex that is not multiplied by i. So, the real part of the complex number a + bi is a; the real part of a complex number is a real number.
4. <u><em>i:</em></u> a number defined with the property that 12 = -1.
5. <em><u>Multiplicative inverse</u></em>: the inverse of a complex number a + bi is a complex number c + di such that the product of these two numbers equals 1.
6. <em><u>Imaginary number</u></em>: any nonzero multiple of i; this is the same as the square root of any negative real number.
7. <em><u>Complex conjugate</u></em>: the conjugate of a complex number has the opposite imaginary part. So, the conjugate of a + bi is a - bi. Likewise, the conjugate of a - bi is a + bi. So, complex conjugates always occur in pairs.
Answer: 3,988.8
Usaremos la fómula: I = C * i * n
I = 72 000 * 0.05 * (1 año + 1 mes + 10 día)
I = 72 000 * 0.05 * (1 + 0.08 + 0.0028)
I = 72 000 * 0.05 * 1.108
3,988.8
Step-by-step explanation:
Podemos obtener el interés que produce un capital con la siguiente fórmula:
I = C * i * n
Ejemplo: Si queremos calcular el interés simple que produce un capital de 1.000.000 pesos invertido durante 5 años a una tasa del 8% anual. El interés simple se calculará de la siguiente forma:
I = 1.000.000 * 0,08 * 5 = 400.000
Si queremos calcular el mismo interés durante un periodo menor a un año (60 días), se calculará de la siguiente forma:
Periodo: 60 días = 60/360 = 0,16
I = 1.000.000 * 0,08 * 60/360 = 13.333
Espero te ayude :3
Answer:
The unit price at Price-Club is $0.2158 per ounce.
The unit price at Shop Mart is $0.2925 per ounce.
Step-by-step explanation:
Price Club:
12-ounce box of crackers for $2.59
So
12 ounces - $2.59
1 ounce - x



The unit price at Price-Club is $0.2158 per ounce.
Shop Mart:
1-pound box of crackers for $4.68.
1 pound is 16 ounces. So
16 ounces - $4.68
1 ounce - x



The unit price at Shop Mart is $0.2925 per ounce.
Answer:
a) Interest earned = $36
New Balance = $336
b) Interest rate = 0.05 or 5%
New Balance = $517.5
c) time t = 5
New Balance = $612.5
d) Principal Amount = $675
New Balance = $783
Step-by-step explanation:
We are given:
a) Principal (P) = $300
Rate (r) = 3% or 0.03
Time (t)= 4 years
Interest earned = ?
The formula used is: 
Putting values and finding interest

So, Interest earned = $36
New Balance = Principal + Interest = 300+36 = $336
b) a) Principal (P) = $300
Rate (r) = ?
Time (t)= 3 years
Interest earned = 67.50
The formula used is: 
Putting values and finding rate

So, Interest rate = 0.05 or 5%
New Balance = Principal + Interest = 450+67.50 = $517.5
c) Principal (P) = $500
Rate (r) = 4.5% or 0.045
Time (t)= ?
Interest earned = $112.50
The formula used is: 
Putting values and finding time

So, time t = 5
New Balance = Principal + Interest = 500+112.50 = $612.5
d) Principal (P) = ?
Rate (r) = 8% or 0.08
Time (t)= 2 years
Interest earned = 108.00
The formula used is: 
Putting values and finding Principal

So, Principal Amount = $675
New Balance = Principal + Interest = 675+108 = $783