1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
6

How do you solve: 5x^2 + 25x - 70

Mathematics
2 answers:
Novosadov [1.4K]3 years ago
5 0
You can't solve it. It is already simplified because are no like terms.
Oxana [17]3 years ago
3 0
<span>
</span><span>Equation at the end of step  1  :</span><span> (5x2 - 25x) - 70 = 0 </span><span>Step  2  :</span><span>Step  3  :</span>Pulling out like terms :

<span> 3.1 </span>    Pull out like factors :

  <span> 5x2 - 25x - 70</span>  =  <span> 5 • (x2 - 5x - 14)</span> 

Trying to factor by splitting the middle term

<span> 3.2 </span>    Factoring <span> x2 - 5x - 14</span> 

The first term is, <span> <span>x2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -5x </span> its coefficient is <span> -5 </span>.
The last term, "the constant", is <span> -14 </span>

Step-1 : Multiply the coefficient of the first term by the constant <span> <span> 1</span> • -14 = -14</span> 

Step-2 : Find two factors of  -14  whose sum equals the coefficient of the middle term, which is  <span> -5 </span>.

<span><span>     -14   +   1   =   -13</span><span>     -7   +   2   =   -5   That's it</span></span>


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  2 
                     <span>x2 - 7x</span> + 2x - 14

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-7)
              Add up the last 2 terms, pulling out common factors :
                    2 • (x-7)
Step-5 : Add up the four terms of step 4 :
                    (x+2)  •  (x-7)
             Which is the desired factorization

<span>Equation at the end of step  3  :</span> 5 • (x + 2) • (x - 7) = 0 <span>Step  4  :</span>Theory - Roots of a product :

<span> 4.1 </span>   A product of several terms equals zero.<span> 

 </span>When a product of two or more terms equals zero, then at least one of the terms must be zero.<span> 

 </span>We shall now solve each term = 0 separately<span> 

 </span>In other words, we are going to solve as many equations as there are terms in the product<span> 

 </span>Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

<span> 4.2 </span>     Solve :    5   =  0

<span>This equation has no solution.
</span>A a non-zero constant never equals zero.

Solving a Single Variable Equation :

<span> 4.3 </span>     Solve  :    x+2 = 0<span> 

 </span>Subtract  2  from both sides of the equation :<span> 
 </span>                     x = -2 

Solving a Single Variable Equation :

<span> 4.4 </span>     Solve  :    x-7 = 0<span> 

 </span>Add  7  to both sides of the equation :<span> 
 </span>                     x = 7 

Supplement : Solving Quadratic Equation Directly<span>Solving <span> x2-5x-14</span>  = 0 directly </span>

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

<span> 5.1 </span>     Find the Vertex of   <span>y = x2-5x-14

</span>Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero).<span> 

 </span>Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.<span> 

 </span>Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.<span> 

 </span>For any parabola,<span>Ax2+Bx+C,</span>the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   2.5000 <span> 

 </span>Plugging into the parabola formula   2.5000  for  x  we can calculate the  y -coordinate :<span> 
 </span><span> y = 1.0 * 2.50 * 2.50 - 5.0 * 2.50 - 14.0 
</span>or   y = -20.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for : <span> y = x2-5x-14</span>
Axis of Symmetry (dashed)  {x}={ 2.50} 
Vertex at  {x,y} = { 2.50,-20.25}  
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-2.00, 0.00} 
Root 2 at  {x,y} = { 7.00, 0.00} 

Solve Quadratic Equation by Completing The Square

<span> 5.2 </span>    Solving  <span> x2-5x-14 = 0</span> by Completing The Square<span> .

 </span>Add <span> 14 </span> to both side of the equation : 
  <span> x2-5x = 14</span>

Now the clever bit: Take the coefficient of  x , which is <span> 5</span> , divide by two, giving <span> 5/2</span> , and finally square it giving <span> 25/4</span> 

Add <span> 25/4</span>  to both sides of the equation :
  On the right hand side we have :
   14  +  25/4    or,  (14/1)+(25/4) 
  The common denominator of the two fractions is  4   Adding  (56/4)+(25/4)  gives  81/4 
  So adding to both sides we finally get :
  <span> x2-5x+(25/4) = 81/4</span>

Adding <span> 25/4</span>  has completed the left hand side into a perfect square :
  <span> <span>x2-5x+(25/4)</span> </span> =
   (x-(5/2)) • (x-(5/2))  =
  <span>(x-(5/2))2 </span>
Things which are equal to the same thing are also equal to one another. Since
  <span> x2-5x+(25/4) = 81/4</span> and
  <span> x2-5x+(25/4) = (x-(5/2))2 </span>
then, according to the law of transitivity,
  <span> (x-(5/2))2 = 81/4</span>

We'll refer to this Equation as  Eq. #5.2.1  

The <span>Square Root Principle </span>says that When two things are equal, their square roots are equal.

Note that the square root of
  <span> <span>(x-(5/2))2 </span> </span> is
  <span> <span>(x-(5/2))2/2</span> =
  <span>(x-(5/2))1</span> =
   x-(5/2)</span>

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:
  <span> x-(5/2) = <span>√<span> 81/4 </span></span></span>

Add <span> 5/2 </span> to both sides to obtain:
  <span> x = 5/2 + √<span> 81/4 </span></span>

Since a square root has two values, one positive and the other negative
  <span> x2 - 5x - 14 = 0</span>
   has two solutions:
  <span>x = 5/2 + √<span> 81/4 </span></span>
   or
  <span>x = 5/2 - √<span> 81/4 </span></span>

Note that <span> √<span> 81/4 </span></span>can be written as
  <span>√ 81  / √ 4 </span>  which is <span>9 / 2 </span>

Solve Quadratic Equation using the Quadratic Formula

<span> 5.3 </span>    Solving   <span> x2-5x-14 = 0</span> by the Quadratic Formula<span> .

 </span>

You might be interested in
What output corresponds with I2?
Sonbull [250]

Answer:

Solve for the input that corresponds to the given output value. (Round answers to three decimal places when appropriate. Enter your answers as a comma-separated list. Note: Even though the question may be completed without the use of technology, the authors intend for you to complete the activity using the technology you will be using.

Step-by-step explanation:

6 0
3 years ago
8x + 34. What does X equal
rosijanka [135]

Answer: x=-4.25

Step-by-step explanation:

First you put it in to y= mx+b form.

0=8x+34

Then you subtract 34 from both sides

-34=8x

Then you divide 8 from both sides

Leaving you with

x=-4.25

4 0
3 years ago
Plz help asap i meean asap plzz
aleksandrvk [35]
1. 4.374
2. 52.64
3. 840.5
6 0
3 years ago
Read 2 more answers
Hello can you guys please help me with this thank you soooo muchhh&lt;3
Free_Kalibri [48]

Answer:

i like ya cut g

Step-by-step explanation:

1.b

2.d

3.a

4.c

5.a

6.d

7.b

8.c

4 0
3 years ago
What is the HCF of 30 and 50 <br><br> Pls I need this
Tom [10]

10
Therefore, the greatest common factor of 30 and 50 is 10.
8 0
2 years ago
Read 2 more answers
Other questions:
  • Stephen evaluated (6.34 x 10^-7)(4.5 x 10^3). His work is shown below. Which statements describe his errors? Check all that appl
    13·2 answers
  • Leonard drinks coffee that contains 300 mg of caffeine. Over the course of the day, every hour, one-half of the caffeine in his
    5·1 answer
  • Given a sequence is defined by the explicit definition t_n= n^2+nt n = n 2 + n, find the 4th term of the sequence. (i.e. t_4t 4)
    5·2 answers
  • What is the y intercept of the line whose equation is y=1/x-3
    6·2 answers
  • What is the meaning os slpoe in math and please give an example for <br><br> y=2x-1;(-2,2)
    11·1 answer
  • A car needs fixing and Abe can fix it for $70 per hour with a $130 part, but Gabe can fix it for $80 an hour with a $40 part.How
    15·1 answer
  • Blake is going to invest in an account paying an interest rate of 1.5% compounded quarterly. How much would Blake need to invest
    12·1 answer
  • Evaluate each function.<br> 15) f(n)= n° + 3n?; Find f(-4a²)
    9·1 answer
  • A drug store stocked 672 bottles of some kind of medicine.
    8·1 answer
  • What is the slope of the line passing through the points (-3, 4) and (2, - 1)?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!