1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
6

How do you solve: 5x^2 + 25x - 70

Mathematics
2 answers:
Novosadov [1.4K]3 years ago
5 0
You can't solve it. It is already simplified because are no like terms.
Oxana [17]3 years ago
3 0
<span>
</span><span>Equation at the end of step  1  :</span><span> (5x2 - 25x) - 70 = 0 </span><span>Step  2  :</span><span>Step  3  :</span>Pulling out like terms :

<span> 3.1 </span>    Pull out like factors :

  <span> 5x2 - 25x - 70</span>  =  <span> 5 • (x2 - 5x - 14)</span> 

Trying to factor by splitting the middle term

<span> 3.2 </span>    Factoring <span> x2 - 5x - 14</span> 

The first term is, <span> <span>x2</span> </span> its coefficient is <span> 1 </span>.
The middle term is, <span> -5x </span> its coefficient is <span> -5 </span>.
The last term, "the constant", is <span> -14 </span>

Step-1 : Multiply the coefficient of the first term by the constant <span> <span> 1</span> • -14 = -14</span> 

Step-2 : Find two factors of  -14  whose sum equals the coefficient of the middle term, which is  <span> -5 </span>.

<span><span>     -14   +   1   =   -13</span><span>     -7   +   2   =   -5   That's it</span></span>


Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -7  and  2 
                     <span>x2 - 7x</span> + 2x - 14

Step-4 : Add up the first 2 terms, pulling out like factors :
                    x • (x-7)
              Add up the last 2 terms, pulling out common factors :
                    2 • (x-7)
Step-5 : Add up the four terms of step 4 :
                    (x+2)  •  (x-7)
             Which is the desired factorization

<span>Equation at the end of step  3  :</span> 5 • (x + 2) • (x - 7) = 0 <span>Step  4  :</span>Theory - Roots of a product :

<span> 4.1 </span>   A product of several terms equals zero.<span> 

 </span>When a product of two or more terms equals zero, then at least one of the terms must be zero.<span> 

 </span>We shall now solve each term = 0 separately<span> 

 </span>In other words, we are going to solve as many equations as there are terms in the product<span> 

 </span>Any solution of term = 0 solves product = 0 as well.

Equations which are never true :

<span> 4.2 </span>     Solve :    5   =  0

<span>This equation has no solution.
</span>A a non-zero constant never equals zero.

Solving a Single Variable Equation :

<span> 4.3 </span>     Solve  :    x+2 = 0<span> 

 </span>Subtract  2  from both sides of the equation :<span> 
 </span>                     x = -2 

Solving a Single Variable Equation :

<span> 4.4 </span>     Solve  :    x-7 = 0<span> 

 </span>Add  7  to both sides of the equation :<span> 
 </span>                     x = 7 

Supplement : Solving Quadratic Equation Directly<span>Solving <span> x2-5x-14</span>  = 0 directly </span>

Earlier we factored this polynomial by splitting the middle term. let us now solve the equation by Completing The Square and by using the Quadratic Formula

Parabola, Finding the Vertex :

<span> 5.1 </span>     Find the Vertex of   <span>y = x2-5x-14

</span>Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 1 , is positive (greater than zero).<span> 

 </span>Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.<span> 

 </span>Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.<span> 

 </span>For any parabola,<span>Ax2+Bx+C,</span>the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   2.5000 <span> 

 </span>Plugging into the parabola formula   2.5000  for  x  we can calculate the  y -coordinate :<span> 
 </span><span> y = 1.0 * 2.50 * 2.50 - 5.0 * 2.50 - 14.0 
</span>or   y = -20.250

Parabola, Graphing Vertex and X-Intercepts :

Root plot for : <span> y = x2-5x-14</span>
Axis of Symmetry (dashed)  {x}={ 2.50} 
Vertex at  {x,y} = { 2.50,-20.25}  
 x -Intercepts (Roots) :
Root 1 at  {x,y} = {-2.00, 0.00} 
Root 2 at  {x,y} = { 7.00, 0.00} 

Solve Quadratic Equation by Completing The Square

<span> 5.2 </span>    Solving  <span> x2-5x-14 = 0</span> by Completing The Square<span> .

 </span>Add <span> 14 </span> to both side of the equation : 
  <span> x2-5x = 14</span>

Now the clever bit: Take the coefficient of  x , which is <span> 5</span> , divide by two, giving <span> 5/2</span> , and finally square it giving <span> 25/4</span> 

Add <span> 25/4</span>  to both sides of the equation :
  On the right hand side we have :
   14  +  25/4    or,  (14/1)+(25/4) 
  The common denominator of the two fractions is  4   Adding  (56/4)+(25/4)  gives  81/4 
  So adding to both sides we finally get :
  <span> x2-5x+(25/4) = 81/4</span>

Adding <span> 25/4</span>  has completed the left hand side into a perfect square :
  <span> <span>x2-5x+(25/4)</span> </span> =
   (x-(5/2)) • (x-(5/2))  =
  <span>(x-(5/2))2 </span>
Things which are equal to the same thing are also equal to one another. Since
  <span> x2-5x+(25/4) = 81/4</span> and
  <span> x2-5x+(25/4) = (x-(5/2))2 </span>
then, according to the law of transitivity,
  <span> (x-(5/2))2 = 81/4</span>

We'll refer to this Equation as  Eq. #5.2.1  

The <span>Square Root Principle </span>says that When two things are equal, their square roots are equal.

Note that the square root of
  <span> <span>(x-(5/2))2 </span> </span> is
  <span> <span>(x-(5/2))2/2</span> =
  <span>(x-(5/2))1</span> =
   x-(5/2)</span>

Now, applying the Square Root Principle to  Eq. #5.2.1  we get:
  <span> x-(5/2) = <span>√<span> 81/4 </span></span></span>

Add <span> 5/2 </span> to both sides to obtain:
  <span> x = 5/2 + √<span> 81/4 </span></span>

Since a square root has two values, one positive and the other negative
  <span> x2 - 5x - 14 = 0</span>
   has two solutions:
  <span>x = 5/2 + √<span> 81/4 </span></span>
   or
  <span>x = 5/2 - √<span> 81/4 </span></span>

Note that <span> √<span> 81/4 </span></span>can be written as
  <span>√ 81  / √ 4 </span>  which is <span>9 / 2 </span>

Solve Quadratic Equation using the Quadratic Formula

<span> 5.3 </span>    Solving   <span> x2-5x-14 = 0</span> by the Quadratic Formula<span> .

 </span>

You might be interested in
PLEASE HELP REAL ANSWERS!
Norma-Jean [14]
I’m sorry i don’t know but i’m thinking it’s B not sure tho
6 0
3 years ago
What fractional part of the day do you spend sleeping if you sleep 8 hours?
fomenos

You sleep 1/3 of the day.

5 0
3 years ago
In the number 707B47.B is a prime number.If the number is rounder off to 3sf its value is 708000 what is the biggest value of B
zhenek [66]
<h3>Answer:  7</h3>

The list of single digit primes is {2,3,5,7}. The largest prime is 7, so B = 7 is the largest possible value.

Also note how 707,747 rounds to 708,000 when rounding to 3 significant figures.

7 0
3 years ago
Please ANSWER THE ANSWER HAS TO BE A INTEGER OR A DECIMAL.
Natali [406]

Answer: 4.3

Step-by-step explanation: To find the range you have to subtract the highest number by the lowest number. So you'd subtract 2.6 by -1.7. And since -1.7 is already a negative number, it would get turned into a positive.

5 0
3 years ago
Read 2 more answers
Which trigonometric function has a range that does not include 0.4?
Montano1993 [528]
<h2>Hello!</h2>

The answer is: y=cscx

<h2>Why?</h2>

Domain and range of trigonometric functions are already calculated, so let's discard one by one in order to find the correct answer.

The range is where the function can exist in the vertical axis when we assign values to the variable.

First:

y=cosx: Incorrect, it does include 0.4 since the cosine range goes from -1 to 1 (-1 ≤ y ≤ 1)

Second:

y=cotx: Incorrect, it also does include 0.4 since the cotangent range goes from is all the real numbers.

Third:

y=cscx: Correct, the cosecant function is all the real numbers without the numbers included between -1 and 1 (y≤-1 or y≥1).

Fourth:

y=sinx : Incorrect, the sine function range is equal to the cosine function range (-1 ≤ y ≤ 1).

I attached a pic of the csc function graphic where you can verify the answer!

Have a nice day!

8 0
3 years ago
Other questions:
  • 4-10 please I need answers now it’s HOMEWORK!!!!!!
    5·1 answer
  • 8y +12 - y =61
    10·1 answer
  • Am i correct? will mark brainliest
    5·2 answers
  • A local screen-printing company sells T-shirts at various prices, in dollars, depending upon how many T-shirts are bought at
    9·2 answers
  • Explain why you should récord a 1 in the tens columna when you regroup in addition problem
    6·1 answer
  • Use the table to find the ratio. Enter the ratio as a fraction in simplest form.
    12·1 answer
  • 33 1/3% of what number is 32?
    14·2 answers
  • ALL THE INFO IS IN THE PIC PLEASE HELPPPPPP 100 POINTSSSS I WILL MARK BRAINLIEST TO BEST ANSWER
    9·2 answers
  • The radius of a circle wheel is 35 cm. How many revolutions does it make to cover a distance of 81.40
    10·1 answer
  • A point is dilated with respect to the origin. Determine the value of K and state whether the dilation is an expansion or contra
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!