Answer:
This can be explained based on structure, and on metabolisms of carbohydrate.
Explanation:
Carbohydrate has a relatively simple structural composition than the either protein or fatty acids. The C, H and Oxygen molecules are of relatively fewer in number and few chains than fats and protein.Thus cells will spend less energy to break bonds(catabolisims) among these molecules during cellular respiration pathways to trap the energy.
In addition glucose the end products of carbohydrate did not need any processing before it enters glycolysis, Kreb's Cycle and oxidative phosphorylation pathways to generate energy for the cells.
Conversely, for protein to be used it has to be first deaminated(removal of amino acid) by the liver before it enters glycolysis,while fats needs to be broken down and undergo beta oxidation with the long chains removed before it can form acetyl CoA. Therefore cells will prefer few steps, less endergonic pathways of glucose than longer more endergonic amino acids and fatty acid pathways.
Furthermore, glucose can be used in cellular respiration to produce energy either aerobically or anaerobically, while fats can only be used anaerobically. Therefore, since cells usually prefer to thrive in aerobic conditions they breakdown glucose easily during this period, and when lack of oxygen occurs they switched to anaerobic, Thus, the versatility of glucose to oxygen concentration makes glucose a better choice. Besides if fats was used anaerobically, ketone bodies build up which may be toxic to the cells.
Answer:
Sickle cell anemia is an inherited condition in which there aren't enough healthy red blood cells to carry oxygen through an individual's body. The red blood cells of a healthy individual are flexible and round, and they move through blood vessels with no problem, transporting oxygen successfully. However, a person with sickle cell anemia has rigid, sticky red blood shaped like sickles or crescent moons. These cells often get stuck in small blood vessels, which can slow or block blood flow and oxygen delivery to different parts of the body.
The sickle cell anemia trait is found on a recessive allele of the hemoglobin gene, while the regular red blood cell trait is found on the dominant allele. This means that a person must have two copies of the recessive allele (one from their mother and the other from their father) to be born with this condition. People who have one dominant and one recessive allele or both dominant alleles will have healthy red blood cells.
Prokaryotes- lack a cell nucleus, unicellular, in the bacteria and archaea domain, lack mitochondria and chloroplast, microscopic
eukaryotes- contains a cell nucleus, multicellular, only in the eukarya domain, contains mitochondria and chloroplast, not microscopic
<span>A scientific law describes repeated observations under a given set of conditions. These laws are not too specific, and they imply a casual relationship. These laws do not explain why something occurs, they merely state that something will occur if the given conditions are met. Therefore, the formation of a scientific law is a result of repeated observations. An example is Newton's first law of motion, which gives certain conditions for an object, such as no force acting on it, and then describes what the object will do in that situation, that is, remain in motion or remain stationary.</span>