Density=mass/volume
given mass=120g and volume=200cm3
density=

or abot 0.6
the density is
1. Let a and b be coefficients such that

Combining the fractions on the right gives



so that

2. a. The given ODE is separable as

Using the result of part (1), integrating both sides gives

Given that y = 1 when x = 1, we find

so the particular solution to the ODE is

We can solve this explicitly for y :


![\ln|y| = \ln\left|\sqrt[3]{\dfrac{5x}{2x+3}}\right|](https://tex.z-dn.net/?f=%5Cln%7Cy%7C%20%3D%20%5Cln%5Cleft%7C%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%5Cright%7C)
![\boxed{y = \sqrt[3]{\dfrac{5x}{2x+3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B5x%7D%7B2x%2B3%7D%7D%7D)
2. b. When x = 9, we get
![y = \sqrt[3]{\dfrac{45}{21}} = \sqrt[3]{\dfrac{15}7} \approx \boxed{1.29}](https://tex.z-dn.net/?f=y%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B45%7D%7B21%7D%7D%20%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B15%7D7%7D%20%5Capprox%20%5Cboxed%7B1.29%7D)
Answer:
A. The results contradict the belief that the mean body temperature is 98.6 °F because both the mean and the median are less than 98.6 °F.
Step-by-step explanation:
Assume the temperature data were those in the table below.
You would have calculated that
Mean = 97.9 °F
Median = 97.9 °F
These observations contradict the belief that the mean body temperature is 98.6 °F.
A 2017 study found the mean oral temperature of more than 35 000 British patients was 97.9 °F.
Answer:
A and D are equivalent statements
Step-by-step explanation: