Answer:
B is tbe correct option here
Answer:
x = 2 ± 2 sqrt(5)i
Step-by-step explanation:
(x – 2)^2 + 20 = 0
Subtract 20 from each side
(x – 2)^2 + 20 -20=0 -20
(x – 2)^2 =- 20
Take the square root of each side
sqrt((x – 2)^2) =±sqrt(- 20)
x-2 = ±sqrt(- 20)
We know sqrt(ab) = sqrt(a) sqrt(b)
x-2 = ±sqrt(- 1) sqrt(20)
We know the sqrt (-1) = i
x-2 = ±i sqrt(4*5)
x-2 = ±i sqrt(4) sqrt(5)
Add 2 to each side
x-2+2 = 2 ±i sqrt(4) sqrt(5)
x = 2 ±i 2 sqrt(5)
x = 2 ± 2 sqrt(5)i
Answer:
See below for answers and explanations
Step-by-step explanation:
4! = 4*3*2*1 = 24
0! = 1
2! + 3! = 2*1 + 3*2*1 = 2 + 6 = 8
3! * 4! = 3*2*1 * 4*3*2*1 = 6 * 24 = 144
10! / 7! = 10*9*8*7*6*5*4*3*2*1 / 7*6*5*4*3*2*1 = 10*9*8 / 1 = 720
Answer:
B
Step-by-step explanation:
To rationalise the denominator.
Multiply the numerator/denominator by the radical on the denominator.
The radical on the denominator is
, thus
Multiply the fraction by
→ B
Answer:
a= 40-3b-c/5
a=-10+3b-2c
a=50+2b-3c/14
Step-by-step explanation:
5a+3b+c-(3b+c)=40-(3b+c)
5a=40-3b-c
5a/5=40/5-3b/5-c/5
a= 40-3b-c/5
a-3b+2c-(3b+2c)=-10-(-3b+2c)
a=-10+3b-2c
14a-2b+3c-(-2b+3c)=50-(-2b+3c)
14a=50+2b-3c
14a/14=50/14+2b/14-3c/14
a=50+2b-3c/14