1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
11

which of the following functions corresponds to the domain -2 a.) f(x)=x-2 b.) f(x)=x-3 c.) f(x)=2x-3

Mathematics
1 answer:
aleksandr82 [10.1K]3 years ago
5 0
Would be c. due to b and c not having -2
You might be interested in
Someone help please!!!
Sati [7]

Answer:

<em>y</em><em> </em><em>intercep</em><em>t</em><em> </em><em>=</em><em> </em><em> </em><em>-</em><em>5</em><em> </em>

<em>slope</em><em>=</em><em> </em><em>4</em><em> </em>

<em>equa</em><em>tion</em><em>:</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em>

EXPLANATION:

<em>FIRST</em><em>,</em><em> </em><em>you</em><em> </em><em>must </em><em>write</em><em> </em><em>the</em><em> </em><em>formula </em><em>for</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>graph</em><em> </em><em> </em><em>,</em><em> </em><em>whic</em><em>h</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>x</em><em>)</em><em> </em><em>+</em><em> </em><em>c</em>

<em>where</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>any</em><em> </em><em>y</em><em> </em><em>component</em><em> </em><em>and</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>it's </em><em>correspondi</em><em>ng</em><em> </em><em>x</em><em> </em><em>componen</em><em>t</em><em> </em><em>,</em><em> </em><em>m</em><em> </em><em>is</em><em> </em><em>the </em><em>gradien</em><em>t</em><em> </em><em>or</em><em> </em><em>slope</em><em> </em><em>and</em><em> </em><em>c</em><em> </em><em>is</em><em> </em><em>the </em><em>consta</em><em>nt</em><em> </em><em>or</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>SOLUT</em><em>ION</em><em>:</em>

<em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>c</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>gradie</em><em>nt</em><em> </em><em>(</em><em>m</em><em>)</em>

<em>m</em><em> </em><em>=</em><em> </em><em><u>y2</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>y1</u></em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x2</em><em> </em><em>-</em><em> </em><em>x1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>(</em><em> </em><em>(</em><em>-</em><em>1</em><em>)</em><em>-</em><em>(</em><em>-</em><em>5</em><em>)</em><em> </em><em>)</em><em> </em><em>÷</em><em> </em><em>(</em><em>1</em><em>-</em><em>0</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>+</em><em>5</em><em> </em><em>÷</em><em> </em><em>1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>4</em>

<em>There</em><em>fore</em><em>,</em><em> </em><em>the</em><em> </em><em>slop</em><em>e</em><em> </em><em>is</em><em> </em><em>4</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em>in</em><em> </em><em>the </em><em>abo</em><em>ve</em><em> </em><em>equation</em><em>,</em><em> </em><em>I </em><em>substitut</em><em>ed</em><em> </em><em>the</em><em> </em><em>val</em><em>ue</em><em> </em><em>I </em><em>had</em><em> </em><em>for</em><em> </em><em>the</em><em> </em><em>slope </em><em>or</em><em> </em><em>the</em><em> </em><em>gradient</em><em> </em><em>or</em><em> </em><em>m</em><em>.</em>

<em>SO</em><em> </em><em>NOW</em><em> </em><em>IM</em><em> </em><em>ABO</em><em>UT</em><em> </em><em>TO</em><em> </em><em>FIND</em><em> </em><em>C</em>

<em><u>TO</u></em><em><u> </u></em><em><u>FIND</u></em><em><u> </u></em><em><u>C</u></em><em><u>,</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>MUST</u></em><em><u> </u></em><em><u>FIRST</u></em><em><u> </u></em><em><u>PICK</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>CORRESP</u></em><em><u>ONDING</u></em><em><u> </u></em><em><u>Y</u></em><em><u> </u></em><em><u>AND</u></em><em><u> </u></em><em><u>X</u></em><em><u> </u></em><em><u>COMPO</u></em><em><u>NENT</u></em><em><u>.</u></em>

<em><u>I</u></em><em><u> </u></em><em><u>CHOO</u></em><em><u>SE</u></em><em><u> </u></em><em><u>MY</u></em><em><u> </u></em><em>Y</em><em> </em><em>=</em><em> </em><em>3</em><em> </em><em>and</em><em> </em><em>X</em><em> </em><em>=</em><em> </em><em>2</em>

<em> </em><em> </em><em>Now</em><em> </em><em>I'm </em><em>goi</em><em>ng</em><em> </em><em>to</em><em> </em><em>substitute</em><em> </em><em>those</em><em> </em><em>valu</em><em>es</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>formul</em><em>a</em><em>.</em>

<em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>=</em><em> </em><em>4</em><em>(</em><em>2</em><em>)</em><em> </em><em> </em><em>+</em><em> </em><em>C</em>

<em>since</em><em> </em><em>it's </em><em>an</em><em> </em><em>equation</em><em> </em><em>with</em><em> </em><em>one</em><em> </em><em>variable</em><em>,</em><em> </em><em>no</em><em> </em><em>need </em><em>for</em><em> </em><em>simul</em><em>taneous</em><em> equations</em><em>.</em>

<em> </em><em>3</em><em> </em><em>=</em><em> </em><em>8</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em>3</em><em>-</em><em>8</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em>

<em>SO</em><em> </em><em>THATS</em><em> </em><em>HOW</em><em> </em><em>WE</em><em> </em><em>ARRIVED</em><em> </em><em>AT</em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>AND</em><em> </em><em>4</em><em>.</em>

<em> </em><em>WITH</em><em> </em><em>THAT</em><em>,</em><em> </em><em>the</em><em> </em><em>equa</em><em>tion</em><em> </em><em>of</em><em> </em><em>the </em><em>line</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em><em>.</em>

<em> </em>

<em>I</em><em> </em><em>HOPE</em><em> </em><em>IT</em><em> </em><em>WAS</em><em> </em><em>HELPFU</em><em>L</em><em>.</em><em />

4 0
3 years ago
What is the measure of one interior angle of a regular polygon that has 40 sides?
s344n2d4d5 [400]
Hope this is correct and hope it helps x

8 0
3 years ago
Determine wether 2(x+3)= 2x+6
wariber [46]
It is.

2(x+3)=2x +6
Times 2
2x + 6 =2x+6

Hope this helped,
-Tiara
5 0
3 years ago
Mark wants to improve his free throw percentage in basketball He has shot 1,250 free throws over the last 20 days. He shot eithe
Sedaia [141]
Let's use a for number of days when he shot 50 shots and b for number of days when he shot 100 shots.
We have:
a + b = 20

We also know that he shot total of 1250 shots:
50a + 100 b = 1250

We have two equations. We can solve them for a and b.  Let's rearange first equation for a:
a= 20 - b
We insert this into second equation:
50 * (20 - b ) + 100b = 1250
1000 - 50b + 100b = 1250
50b = 250
b = 5
a = 20 - 5
a = 15

Mark shot 100 shots on 5 days.
4 0
3 years ago
The two-way frequency table below shows data on student behavior and the use of positive phone calls home as an incentive for go
dusya [7]

Answer:

From the frequency table, let's calculate the row total.

Row total for phone call = 19 + 9 = 28

Row total for no phone call = 8 +6 = 14

To calculate their respective row relative frequencies, let's use:

Row relative freq = \frac{freq.}{Row total}

Now, the two-way frequency table will be computed as:

For phone call:

Desirable behavior = \frac{19}{28} = 0.67857 ≈0.69

Undesirable behaviour = \frac{9}{28} = 0.3214 ≈0.32

No phone call:

Desirable behaviour = \frac{8}{14} = 0.5714 ≈ 0.57

Undesirable behaviour = \frac{6}{14} = 0.4286 ≈ 0.43

The complete two-way table is attached.

8 0
3 years ago
Other questions:
  • A group of 75 math students were asked whether they like algebra and whether they like geometry. A total of 45 students like alg
    9·2 answers
  • Yin has 3 blue shirts. 10% of her shirts are blue. Liang has 1.5 times as many shirts as Yin has. How many shirts does Liang hav
    12·1 answer
  • Isaac wrote the integers from 1 through 104, inclusive. How many digits did he write?
    9·1 answer
  • Given the functions f(n) = 11 and g(n) = (3/4)n − 1, combine them to create a geometric sequence, an, and solve for the 9th term
    6·1 answer
  • Pleaseeeeee show the work
    5·1 answer
  • Christopher has a part-time job that pays $2,900 for the year. During the year 24% is taken out for Federal Taxes. At the end of
    11·1 answer
  • At a recent meeting, the manager of a national call center for a major Internet bank made the statement that the average past-du
    15·1 answer
  • Find the value of k if x-1 is the factor of x ^ 2 + x + k​
    12·1 answer
  • B<br> 45°<br> 71°<br> E<br> 27°<br> A<br> D<br> 11. What is mBAC
    8·1 answer
  • Please help I need the right answer
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!