Explanation:
It is given that,
Diameter of the circular loop, d = 1.5 cm
Radius of the circular loop, r = 0.0075 m
Magnetic field, 
(A) We need to find the current in the loop. The magnetic field in a circular loop is given by :



I = 32.22 A
(b) The magnetic field on a current carrying wire is given by :



r = 0.00238 m

Hence, this is the required solution.
Answer:
A) s = 796.38 m
B) t = 12.742 s
C) T = 25.484 s
Explanation:
A) First of all let's find the time it takes to get to maximum height using Newton's first equation of motion.
v = u + gt
u = 125 m/s
v = 0 m/s
g = 9.81 m/s²
Thus;
0 = 125 - 9.81(t)
g is negative because motion is against gravity. Thus;
9.81t = 125
t = 125/9.81
t = 12.742 s
Max height will be gotten from Newton's 2nd equation of motion;
s = ut + ½gt²
s = (125 × 12.742) + (½ × -9.81 × 12.742²)
s = 1592.75 - 796.37
s = 796.38 m
B) time to reach maximum height is;
t = u/g
t = 125/9.81
t = 12.742 s
C) Total time elapsed is;
T = 2u/g
T = 2 × 125/9.81
T = 25.484 s
The net force on the sled is 6.6 N pointing backwards, opposite to the direction it's sliding. That's why it's slowing down, and will eventually stop.
Gas stations or sewage treatment facility