1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
11

Need help asap ‼️ 20 pts

Physics
1 answer:
Bogdan [553]3 years ago
8 0

I can only see C and D but it should be whichever one is pointing inwards at the moon. Hope this helps!

You might be interested in
while working out a man performed 2525j of work in 19seconds . what was his power A:132.9w. B:241.5w C 47.975w. D100.5w
Olenka [21]
A: 132.9w because 2525\19 is how much energy transferred per second which is also known as the power
7 0
3 years ago
Read 2 more answers
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
A fox with a thick fur would have a survival advantage over other foxes if
Nat2105 [25]
This question is poorly stated, but I assume you mean what conditions are needed. It would have to be cold outside, correct?
8 0
3 years ago
Which graph shows the correct relationship between kinetic and speed
Elenna [48]
I can’t answer without any graph options
6 0
3 years ago
Read 2 more answers
A. How far does a 100-newton force have to move to do 1,000 joules
Aloiza [94]

Work done by a force is given as the product of force and the distance moved by the force.

<h3>What is work done?</h3>

Work done is the product of force and the distance moved by the the force.

  • Work done = Force × distance

Thus, distance required by the 100 N force is given as:

  • Distance = work done/force

Distance = 1000/100 = 10 m

Distance to be moved is 10 m.

Force applied = work done/ distance

Force applied by the hoist = 500/2

Force applied by the hoist = 250 N

Distance moved in one push-up = 25 cm = 0.25 m

Work done by the athlete after one push-up = 250 × 0.25 m

Work done by the athlete = 62.5 J

Distance moved by the force = 0 m

Work done = 500 × 0 = 0 N

Therefore, for work to be done, force has to move a distance.

Learn more about work done at: brainly.com/question/25573309

5 0
2 years ago
Other questions:
  • The number ocean waves that pass a buoy in one second is _ of the wave
    11·2 answers
  • Denise is riding her bike and falls to the ground. During the collision, she hits both grass and cement.
    5·1 answer
  • A toroid having a square cross section, 5.00 cm on a side, and an inner radius of 15.0 cm has 500 turns and carries a current of
    13·1 answer
  • What is the name of Newton's first law of motion?
    14·1 answer
  • When a battery does 24 j of work on 10 c of charge, the voltage it supplies is?
    6·2 answers
  • Which of the following elements most likely has the highest boiling point?
    13·2 answers
  • Find the velocity in m/s of a swimmer who swims 110m toward the shore in 72 s
    7·1 answer
  • Chromatic aberration in lenses is a result of which wave property of light?
    7·1 answer
  • A merry-go-round on a playground consists of a horizontal solid disk with a weight of 805 N and a radius of 1.58 m. A child appl
    5·1 answer
  • The kinetic theory describes the __1__ of particles in matter and the forces of attraction between them. The theory assumes that
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!