Explanation:
V=40m/s
Vy=V.sina=40.sin20=40 . 0.342=13.68m/s
Vx=V.cosa=40.cos20=40 . 0.766=30.64m/s
Projectile travels during 5 seconds and the ramge becomes:
x=V.t=30.64 . 5=153.2m
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer: The frequency heard will be f = 275.675Hz
Explanation: When an object emitting sound is moving, it occurs a phenomenon called Doppler shift or Doppler effect. What happens is that the sound gets higher when the moving object comes closer the observer and becomes lower after it passes, This change is due to the quantity of waves that passes through an area in an unit of time.
The formula to calculate the Doppler effect is as follows
f = (
) · f₀
f is the observed frequency;
c is the speed of sound;
Vs is velocity of the source;
f₀ is the emitted frequency of source;
Substituting and calculating,
f =
· 300
f = 275.675 Hz
Thus, the frequency heard by the police officer is 275.675Hz.
B. opposite charge and smaller mass
Answer:
15.7 m
Explanation:
The range (horizontal distance) of the projectile is determined only by its horizontal motion.
The horizontal motion is a motion with constant speed, which is equal to the initial horizontal velocity of the object:

where
v = 12.0 m/s is the initial velocity
is the angle between the direction of v and the horizontal
Substituting,

We know that the projectile hits the ground in a time of
t = 2.08 s
so the horizontal distance covered is
