The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
Answer:I'm gonna say mechanical or kinetic depending on how you look at it.
Explanation:
The gravitational field strength is approximately equal to 10 N.
<u>Explanation:</u>
Gravitational field strength is the measure of gravitational force acting on any object placed on the surface of the planet. Generally, the mass of the object is considered as 1 kg.
So the gravitational field strength will be equal to the gravitational force acting on the object.
The formula for gravitational field strength is

Here g is the gravitational field strength, m is the mass of the object placed on the surface and F is the gravitational force acting on the object.
Since, the mass of any object placed on the surface of earth will be negligible compared to the mass of Earth, so the mass of the object is considered as 1 kg.
Then the g = F
And 
Here G is the gravitational constant, M is the mass of Earth and m is the mass of the object placed on the surface, while r is the radius of the Earth.


So, the gravitational field strength is approximately equal to 10 N.
Explanation:
The efficiency of a machine is 70% means 30% of the applied force is wasted in overcoming friction and 70% of the applied force is used to do the work
1. Using Strong Permanent. 2. increasing the current. 3. Decreasing the space between Magnets
Explanation:
Brainiest