Answer:
Q7. 11.3 inches (3 s.f.)
Q8. 96.2 ft
Q9. 36.4cm
Step-by-step explanation:
Q7. Please see attached picture for full solution.
Q8. Let the length of a side of the square be x ft.
Applying Pythagoras' Theorem,
![34^{2} = {x}^{2} + {x}^{2} \\ 2 {x}^{2} = 1156 \\ {x}^{2} = 1156 \div 2 \\ {x}^{2} = 578 \\ x = \sqrt{578} \\](https://tex.z-dn.net/?f=34%5E%7B2%7D%20%20%3D%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20%20%7Bx%7D%5E%7B2%7D%20%20%5C%5C%202%20%7Bx%7D%5E%7B2%7D%20%20%3D%201156%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%3D%201156%20%5Cdiv%202%20%5C%5C%20%20%7Bx%7D%5E%7B2%7D%20%20%3D%20578%20%5C%5C%20x%20%3D%20%20%5Csqrt%7B578%7D%20%20%5C%5C)
Thus, the perimeter of the square is
![= 4( \sqrt{578} ) \\ = 96.2 ft\: \: \: (3 \: s.f.)](https://tex.z-dn.net/?f=%20%3D%204%28%20%5Csqrt%7B578%7D%20%29%20%5C%5C%20%20%3D%2096.2%20ft%5C%3A%20%20%5C%3A%20%20%5C%3A%20%283%20%5C%3A%20s.f.%29)
Q9. Equilateral triangles have 3 equal sides and each interior angle is 60°.
Since the perimeter of the equilateral triangle is 126cm,
length of each side= 126÷3 = 42 cm
The green line drawn in picture 3 is the altitude of the triangle.
Let the altitude of the triangle be x cm.
sin 60°= ![\frac{x}{42}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%7D%7B42%7D%20)
(to 3 s.f.)
Therefore, the length of the altitude of the triangle is 36.4cm.