Answer:
a) a= 8.33 m/s², T = 12.495 N
, b) a = 2.45 m / s²
Explanation:
a) this is an exercise of Newton's second law. As the upper load is secured by a cable, it cannot be moved, so the lower load is determined by the maximum acceleration.
We apply Newton's second law to the lower charge
fr₁ + fr₂ = ma
The equation for the force of friction is
fr = μ N
Y Axis
N - W₁ –W₂ = 0
N = W₁ + W₂
N = (m₁ + m₂) g
Since the beams are the same, it has the same mass
N = 2 m g
We replace
μ₁ 2mg + μ₂ mg = m a
a = (2μ₁ + μ₂) g
a = (2 0.30 + 0.25) 9.8
a= 8.33 m/s²
Let's look for cable tension with beam 2
T = m₂ a
T = 1500 8.33
T = 12.495 N
b) For maximum deceleration the cable loses tension (T = 0 N), so as this beam has less friction is the one that will move first, we are assuming that the rope is horizontal
fr = m₂ a₂
N- w₂ = 0
N = W₂ = mg
μ₂ mg = m a₂
a = μ₂ g
a = 0.25 9.8
a = 2.45 m / s²
200 meters per minutes
500 meters -300 meters= 200 meters
300 meters -100 meters =200 meters
The formula for working out kinetic energy is
=122
KE = kinetic energy
m = mass of a body
v = velocity of a body
kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
For the first one I think :
Answer:
KE = 330750 J
I’m not sure about the second one- sorry
The third is
Answer:
KE = 41454 J
Hope it helps and it is correct, sorry if it isn’t !
Answer:
91.84 m/s²
Explanation:
velocity, v = 600 m/s
acceleration, a = 4 g = 4 x 9.8 = 39.2 m/s^2
Let the radius of the loop is r.
he experiences a centripetal force.
centripetal acceleration,
a = v² / r
39.2 x r = 600 x 600
r = 3600 / 39.2
r = 91.84 m/s²
Thus, the radius of the loop is 91.84 m/s².