Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
i know can you plzz help me with this question im sorry i didt answer your question i just need hel.
Answer:
hey mate
answer is probably voltage as per me
as
Explanation:
Voltage, electric potential difference, electric pressure or electric tension is the difference in electric potential between two points, which is defined as the work needed per unit of charge to move a test charge between the two points
Thank you for posting your question here at brainly. Below is the solution. I hope the answer will help.
<span>Cl^- 1s^2 2s^2p^6 3s^2 3p^6 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 17- 10 =7 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6; 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 19- 10 = 9
</span>
S = 2 + 6.8 + 2.45 = 11.25
<span>Zeff(Cl^-) = 17 – 11.25 = 5.75 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6 same S as for Cl^- but Z increases by 2 hence </span>
<span>Zeff(K^+) = 19 - 11.25 = 7.75</span>