348.34 m/s. When Superman reaches the train, his final velocity will be 348.34 m/s.
To solve this problem, we are going to use the kinematics equations for constant aceleration. The key for this problem are the equations
and
where
is distance,
is the initial velocity,
is the final velocity,
is time, and
is aceleration.
Superman's initial velocity is
, and he will have to cover a distance d = 850m in a time t = 4.22s. Since we know
,
and
, we have to find the aceleration
in order to find
.
From the equation
we have to clear
, getting the equation as follows:
.
Substituting the values:

To find
we use the equation
.
Substituting the values:

Answer:
longing for social inclusion.
Explanation:
Ross here is longing for social inclusion.
He decides to campaign for the his fraternity brother not by choice or will but by peer pressure and social inclusion because most of the students campaigned for Henry so he supports Henry as well. Moreover, he did not be feel left out and he did not have a clear preference as well.
Answer: Volume = 1080m^3
Explanation:
Given that the prism has a 15 m by 18 m rectangular base and a height of 4 m
Volume is the product of length, breath and height. That is
Volume = L × B × H
Where
L = 18 m
B = 15m
H = 4m
Using the formula above gives:
Volume V = 18 × 15 × 4
V = 1080 m^3
Answer:
Explanation:
Given a school bus.
Let say initially the school bus is traveling with speed "v"
Let assume mass of school bus is "m"
Then, the initial kinetic energy is
K.E_initial = ½mv²
Now, if the initial velocity is tripled,
Then, the new velocity is
v_new = 3v.
Note: the mass of the school does not change it is constant
Then, new kinetic energy is
K.E_new = ½m(v_new)²
v_new = 3v
Then,
K.E_new = ½m(3v)²
K.E_new = ½m × 9v²
K.E_new = 9 × ½mv²
Since K.E = ½mv²
Then,
K.E_new = 9 × K.E
So, the new kinetic energy will be 9 times the initial kinetic energy.
So, option D is correct
D. It will be nine times greater.