x%20%2B%203%7D%7B%20%7Bx%7D%5E%7B2%7D%20-%204%20%7D%20" id="TexFormula1" title=" \frac{x + 2}{ {x}^{2} - 9 } \times \frac{x + 3}{ {x}^{2} - 4 } " alt=" \frac{x + 2}{ {x}^{2} - 9 } \times \frac{x + 3}{ {x}^{2} - 4 } " align="absmiddle" class="latex-formula">
1 answer:
Answer:

Step-by-step explanation:
Factorise the denominators of both fractions
x² - 9 and x² - 4 are both differences of squares and factor as
x² - 9 = (x - 3)(x + 3) and x² - 4 = (x - 2)(x + 2), thus express as
× 
Cancel the factors (x + 3) and (x + 2) from the numerators/denominators of both fractions leaving

You might be interested in
y=23x+143 hope this helps
Factor:
(m+5)(m+7)
Solve for the numbers inside, set it = to 0:
m+5=0 >solve
m=-5
m+7=0>solve
m=-7
2^4-1 so 2•2•2•2=16 and 16-1 is 15
Hmmmm
This looks like homework, you sure you've read the terms of service?
When you add a positive and a negative like you did here it basically is the same as subtracting 5 from 3