1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Black_prince [1.1K]
3 years ago
9

Two distinct points are_

Mathematics
1 answer:
weeeeeb [17]3 years ago
5 0

A) never

Two distinct points are _never_ connected by two distinct lines.

You might be interested in
Need help ASAP! i will give brainliest :)
emmasim [6.3K]

Answer:

96 cm^2

Step-by-step explanation:

Total Surface Area of a square pyramid:

A = L + B = a2 + a√(a2 + 4h2))

A = a(a + √(a2 + 4h2))

7 0
3 years ago
Read 2 more answers
Solve 4/x-4=x/x-4-4/3 for x and determine if the solution is extraneous or not
4vir4ik [10]

<u>Answer:</u>

x = 4 (extraneous solution)

<u>Step-by-step explanation:</u>

\frac { 4 } { x - 4 } = \frac { x } { x - 4 } - \frac { 4 } { 3 } \\ \frac { 4 } { x - 4 } - \frac { x } { x - 4 } = - \frac { 4 } { 3 } \\ \frac { 4 - x } { x - 4 } = - \frac { 4 } { 3 } \\ 3 ( 4 - x ) = - 4 ( x - 4 ) \\ 1 2 - 3 x = - 4 x + 1 6 \\ 4 x - 3 x = 1 6 - 1 2 \\ x = 4 \\

This solution is extraneous. Reason being that even if it can be solved algebraically, it is still not a valid solution because if we substitute back x=4, we will get two fractions with zero denominator which would be undefined.

7 0
3 years ago
1/3 of the fish in the tank are snappers. 2/9 of the fish are catfish and the rest are goldfish. There are 40 goldfish in the ta
Paraphin [41]

<u>Find fraction of snappers and catfish:</u>

1/3 + 2/9 = 3/9 + 2/9 = 5/9


<u>Find fraction of goldfish:</u>

1 - 5/9 = 4/9


4/9 = 40 goldfish

1/9 = 40 ÷ 4 = 10

9/9 = 10 x 9 = 90


Answer: 90 fish in the tank


3 0
3 years ago
Read 2 more answers
P: 2,012
OleMash [197]

El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.

<h3>¿Cuál es el volumen remanente entre una caja cúbica vacía y una pelota?</h3>

En esta pregunta debemos encontrar el volumen <em>remanente</em> entre el espacio de una caja <em>cúbica</em> y una esfera introducida en el elemento anterior. El volumen <em>remanente</em> es igual a sustraer el volumen de la pelota del volumen de la caja.

Primero, se calcula los volúmenes del cubo y la esfera mediante las ecuaciones geométricas correspondientes:

Cubo

V = l³

V = (4 cm)³

V = 64 cm³

Esfera

V' = (4π / 3) · R³

V' = (4π / 3) · (2 cm)³

V' ≈ 33.5103 cm³

Segundo, determinamos la diferencia de volumen entre los dos elementos:

V'' = V - V'

V'' = 64 cm³ - 33.5103 cm³

V'' = 30.4897 cm³

El volumen <em>remanente</em> entre la esfera y el cubo es igual a 30.4897 centímetros cúbicos.

Para aprender más sobre volúmenes: brainly.com/question/23940577

#SPJ1

3 0
1 year ago
Derivative, by first principle<br><img src="https://tex.z-dn.net/?f=%20%5Ctan%28%20%5Csqrt%7Bx%20%7D%20%29%20" id="TexFormula1"
vampirchik [111]
\displaystyle\lim_{h\to0}\frac{\tan\sqrt{x+h}-\tan x}h

Employ a standard trick used in proving the chain rule:

\dfrac{\tan\sqrt{x+h}-\tan x}{\sqrt{x+h}-\sqrt x}\cdot\dfrac{\sqrt{x+h}-\sqrt x}h

The limit of a product is the product of limits, i.e. we can write

\displaystyle\left(\lim_{h\to0}\frac{\tan\sqrt{x+h}-\tan x}{\sqrt{x+h}-\sqrt x}\right)\cdot\left(\lim_{h\to0}\frac{\sqrt{x+h}-\sqrt x}h\right)

The rightmost limit is an exercise in differentiating \sqrt x using the definition, which you probably already know is \dfrac1{2\sqrt x}.

For the leftmost limit, we make a substitution y=\sqrt x. Now, if we make a slight change to x by adding a small number h, this propagates a similar small change in y that we'll call h', so that we can set y+h'=\sqrt{x+h}. Then as h\to0, we see that it's also the case that h'\to0 (since we fix y=\sqrt x). So we can write the remaining limit as

\displaystyle\lim_{h\to0}\frac{\tan\sqrt{x+h}-\tan\sqrt x}{\sqrt{x+h}-\sqrt x}=\lim_{h'\to0}\frac{\tan(y+h')-\tan y}{y+h'-y}=\lim_{h'\to0}\frac{\tan(y+h')-\tan y}{h'}

which in turn is the derivative of \tan y, another limit you probably already know how to compute. We'd end up with \sec^2y, or \sec^2\sqrt x.

So we find that

\dfrac{\mathrm d\tan\sqrt x}{\mathrm dx}=\dfrac{\sec^2\sqrt x}{2\sqrt x}
7 0
3 years ago
Other questions:
  • When Josh babysits, he charges a flat fee of $4 plus an hourly rate of r dollars. Josh worked 4 hours at his last job. The equat
    7·1 answer
  • Need some help ya plz
    15·2 answers
  • I WILL GIVE BRAINLIEST. Please help!
    15·1 answer
  • Juan scored 26 points in the first half of the basketball game, and he scored n points in the second half of the
    14·2 answers
  • Three cells with generation times of 60 minutes are inoculated into a culture medium. how many cells are there after 5 hours?
    9·2 answers
  • Given a point P(8,1) on Segment AB with A(-2,3), find the coordinates of B if AP/AB=2/3. The answer should be entered in the for
    10·1 answer
  • A manufacturer produces a large number of microwaves. From past experience, the manufacturer knows that approximately 1.5% of al
    10·1 answer
  • (repost) Help Please I will Give brainliest If Correct!!
    10·2 answers
  • Marissa knows that she needs $35,000 for a down payment on a house. She found an investment that earns 3.25% interest compoundin
    10·1 answer
  • PLEASE HELP I WILL MARK BRAINLIEST!!!!
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!