Answer:
2.33 nC, 4.67 nC
Explanation:
when the two spheres are connected through the wire, the total charge (Q=7.00 nC) re-distribute to the two sphere in such a way that the two spheres are at same potential:
(1)
Keeping in mind the relationship between charge, voltage and capacitance:

we can re-write (1) as
(2)
where:
Q1, Q2 are the charges on the two spheres
C1, C2 are the capacitances of the two spheres
The capacitance of a sphere is given by

where R is the radius of the sphere. Substituting this into (2), we find
(3)
we also know that sphere 2 has twice the diameter of sphere 1, so the radius of sphere 2 is twice the radius of sphere 1:

So the eq.(3) becomes

And re-arranging it we find:

And since we know that the total charge is

we find

Answer:
Oscillation whose amplitude reduce with time are called damped oscillation. This happen because of the friction. In oscillation if its amplitude doesn't change with time then they are called Undamped oscillation
The specific gravity is how the density of the object compares to the density of water. Water's density is 1gram per milliliter. We just need to figure out the density of the object.
The object is .8 kg and it displaces 500mL of water, so the density is the mass divided by the volume. Since the density of water is given in grams, we have to convert the objects mass from kg to g and then we can get the density.
.8kg * 1000g/kg = 800 grams
So
800g/500ml = 1.6grams/mL this is the density.
So divide the density of your object by the density of water, which is 1g/mL, you get 1.6 as the specific gravity. This means the object is 1.6 times more dense than water.
Answer:
a) V1=11.05m/s V2=92.07m/s V3=17.24m/s
b) KE = 16238.26J
Explanation:
For tangential speeds:



For the kinetic energy, it can be calculated as:

Where:



So,

KE=16238.26J