Answer:
350 ft/s²
Explanation:
First, convert mph to ft/s.
58 mi/hr × (5280 ft/mi) × (1 hr / 3600 s) = 85.1 ft/s
Given:
v₀ = 85.1 ft/s
v = 0 ft/s
t = 0.24 s
Find: a
v = at + v₀
a = (v − v₀) / t
a = (0 ft/s − 85.1 ft/s) / 0.24 s
a = -354 ft/s²
Rounded to two significant figures, the magnitude of the acceleration is 350 ft/s².
Answer:
Вес противовеса, или сила нагрузки, составляет затем 100 000 фунтов-футов, разделенных на 20 футов, или 5000 фунтов.
Explanation:
Answer:
the distance traveled by the car is 42.98 m.
Explanation:
Given;
mass of the car, m = 2500 kg
initial velocity of the car, u = 20 m/s
the braking force applied to the car, f = 5620 N
time of motion of the car, t = 2.5 s
The decelaration of the car is calculated as follows;
-F = ma
a = -F/m
a = -5620 / 2500
a = -2.248 m/s²
The distance traveled by the car is calculated as follows;
s = ut + ¹/₂at²
s = (20 x 2.5) + 0.5(-2.248)(2.5²)
s = 50 - 7.025
s = 42.98 m
Therefore, the distance traveled by the car is 42.98 m.
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>