Answer:
N/A
Step-by-step explanation:
Which area of shaded segment?
I'm guessing your problem is this:
y³ - 9y² + y - 9 = 0
right?
In solving this problem, I recommend doing this:
y³ - 9y² + y - 9 = 0
Factor out a y² from the first two numbers in the problem:
y²(y - 9) + (y - 9) = 0
Separate the parentheses which means y - 9 goes on one side. The y² added a one since it came from the + 1 in the middle of expression. When you're separating parentheses like this you just take the outside numbers and combine them together. Since + 1 came from the outside of the (y - 9) and y² also was sitting on the outside of (y - 9) combine them to make y² + 1. Like this:
(y² + 1)(y - 9) = 0
Now separate your two parentheses to two separate problems:
(y² + 1) = 0 and (y - 9) = 0
Now you're y² + 1 will equal:
y² = -1
y = √-1 <-- This number doesn't exist so it will be an imaginary number (i). If you guys didn't learn that in your class I recommend just leaving it as i for that part.
Now solve y - 9 = 0:
y = 9 <-- Since we added nine to both sides to get this.
So you're final answer should be y = i and 9
Answer:
1) f(g(2)) = 24
2) f(g(-1)) = -4
Step-by-step explanation:
1) GIven f(x) = x²+2x and g(x) = 2x
f(g(x)) = f(2x)
f(2x) = (2x)² + 2(2x)
f(2x) = 4x² + 4x
f(g(x)) = 4x² + 4x
f(g(2)) = 4(2)² + 4(2)
f(g(2)) = 16+8
f(g(2)) = 24
2) f(x) = x+1 and g(x) = 5x
f(g(x)) = f(5x)
f(5x)= 5x + 1
f(g(x)) = 5x + 1
f(g(-1)) = 5(-1) + 1
f(g(-1)) = -5+1
f(g(-1)) = -4
B) would be tha answer :)
Point E is correct answer