A is Ea, which stands for activating energy. Energy is needed to get the reaction underway and Ea is the energy needed to “start” the reaction.
B is the temperature either released or absorbed.
The diagram shows that the reaction is exothermic based on the fact that the products energy is lower than the reactants. That is because energy (which is temperature in this case) is released during the process. If the reactants would have been lower than the products, the reaction would be endothermic.
CO2<span> is a linear molecule and the Oxygen (O) atoms on each end are symmetrical. Polarity results from an unequal sharing of valence electrons. Because of this symmetry there is no region of unequal sharing and </span>CO2<span> is a</span>nonpolar<span> molecule</span>
mole ratios of hydrazine should be 1:2. I could be wrong. Are there any options to choose from?
The pH = 2.41
<h3>Further explanation</h3>
Given
5.0% by mass solution of acetic acid
the density of white vinegar is 1.007 g/cm3
Required
pH
Solution
Molarity of solution :

Ka for acetic acid = 1.8 x 10⁻⁵
[H⁺] for weak acid :
![\tt [H^+]=\sqrt{Ka.M}](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7BKa.M%7D)
Input the value :
![\tt [H^+]=\sqrt{1.8\times 10^{-5}\times 0.839}\\\\(H^+]=0.00388=3.88\times 10^{-3}\\\\pH=3-log~3.88=2.41](https://tex.z-dn.net/?f=%5Ctt%20%5BH%5E%2B%5D%3D%5Csqrt%7B1.8%5Ctimes%2010%5E%7B-5%7D%5Ctimes%200.839%7D%5C%5C%5C%5C%28H%5E%2B%5D%3D0.00388%3D3.88%5Ctimes%2010%5E%7B-3%7D%5C%5C%5C%5CpH%3D3-log~3.88%3D2.41)