The answer is d or b it’s bin along time sense I’ve done it
Answer:
y=1/3x-1/3
Step-by-step explanation:
Answer:
Marcela can take up to 13 units.
Step-by-step explanation:
In order to find the number of units that Marcela can take for her college classes, we can set up an inequality and solve for the variable. Since each unit costs $105, we can say that 105u ≤ 1365 where u = the number of units. The number of units multiplied by the cost per unit, must be less than or equal to $1,365. In order to solve for 'u', we can use inverse (opposite) operations and get rid of the coefficient by dividing both sides of the inequality by 105. 1365÷105 = 13. So, the number of units that Marcela can take must be less than or equal to 13 units.
<u>It's not clear what is the specific requirement of the question, but I'll assume a couple of situations to help you with your real problem.</u>
Answer:
$45 (qualified)
$30 (did not qualify)
Step-by-step explanation:
<u>Percentage Calculations</u>
Relative quantities are usually expressed as percentages (%). We say x percent of y is the proportion xy/100. When discounts or surcharges are applied, they are subtracted or added to the original quantity.
The question explains I receive a 10% discount off the original selling price if the total cost plus shipping is greater than $35. Let's assume the total cost plus shipping is $50. Since it's greater than $35, it qualifies for a discount. The discount is 10% of $50 = (10)(50)/100= $5. So the new total cost will be $50 - $5 = $45
Let's suppose now the total cost+shipping is $30. Since it's not greater than $35, no discount will be applied and we have to pay $30
Given:
A fourth-degree polynomial function has zeros 4, -4, 4i , and -4i .
To find:
The fourth-degree polynomial function in factored form.
Solution:
The factor for of nth degree polynomial is:

Where,
are n zeros of the polynomial.
It is given that a fourth-degree polynomial function has zeros 4, -4, 4i , and -4i. So, the factor form of given polynomial is:


![[\because a^2-b^2=(a-b)(a+b)]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5D)
On further simplification, we get

![[\because i^2=-1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20i%5E2%3D-1%5D)
Therefore, the required fourth degree polynomial is
.