1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
3 years ago
8

The unit rate of 27 and 12

Mathematics
1 answer:
ANTONII [103]3 years ago
7 0
3 is the unit rate of 27 and 12
You might be interested in
A homeowner has 20 feet of fencing material to enclose a rectangular area for his pets. the rectangular area is adjacent to a ho
VikaD [51]
5X10=50 sq ft area
Around the 3 sides= 5+10+5=20
7 0
3 years ago
The radius of a circle is 2 inches. what is the circles diameter
andrey2020 [161]
The diameter is a line that stretches across the middle of a circle from end to end.  The radius is one half of this line, stretching from the center of the circle to a point on the side of the circle.  This means that the diameter is 2 times the length of the radius.  2 times 2 is 4, meaning that the diameter is 4 inches.
6 0
3 years ago
Read 2 more answers
Given m ZLMN = 145°, what is m ZXMN?<br> Show all relevant work.
myrzilka [38]
80 degrees. 145 = (4x+5) + (6x-10) = 10x-5... so 10x = 150, x = 15. LMN = 6x-10 = 6(15) - 10 = 80.
4 0
3 years ago
How to re arrange 6x+2y=3 to y= mx+b form
Alex

Answer:

y=-3x+3/2

Step-by-step explanation:

move 6x to the other side

2y=-6x+3

then divide y

y=-3x+3/2

8 0
3 years ago
Solve the following differential equation using using characteristic equation using Laplace Transform i. ii y" +y sin 2t, y(0) 2
kifflom [539]

Answer:

The solution of the differential equation is y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

Step-by-step explanation:

The differential equation is given by: y" + y = Sin(2t)

<u>i) Using characteristic equation:</u>

The characteristic equation method assumes that y(t)=e^{rt}, where "r" is a constant.

We find the solution of the homogeneus differential equation:

y" + y = 0

y'=re^{rt}

y"=r^{2}e^{rt}

r^{2}e^{rt}+e^{rt}=0

(r^{2}+1)e^{rt}=0

As e^{rt} could never be zero, the term (r²+1) must be zero:

(r²+1)=0

r=±i

The solution of the homogeneus differential equation is:

y(t)_{h}=c_{1}e^{it}+c_{2}e^{-it}

Using Euler's formula:

y(t)_{h}=c_{1}[Sin(t)+iCos(t)]+c_{2}[Sin(t)-iCos(t)]

y(t)_{h}=(c_{1}+c_{2})Sin(t)+(c_{1}-c_{2})iCos(t)

y(t)_{h}=C_{1}Sin(t)+C_{2}Cos(t)

The particular solution of the differential equation is given by:

y(t)_{p}=ASin(2t)+BCos(2t)

y'(t)_{p}=2ACos(2t)-2BSin(2t)

y''(t)_{p}=-4ASin(2t)-4BCos(2t)

So we use these derivatives in the differential equation:

-4ASin(2t)-4BCos(2t)+ASin(2t)+BCos(2t)=Sin(2t)

-3ASin(2t)-3BCos(2t)=Sin(2t)

As there is not a term for Cos(2t), B is equal to 0.

So the value A=-1/3

The solution is the sum of the particular function and the homogeneous function:

y(t)= - \frac{1}{3} Sin(2t) + C_{1} Sin(t) + C_{2} Cos(t)

Using the initial conditions we can check that C1=5/3 and C2=2

<u>ii) Using Laplace Transform:</u>

To solve the differential equation we use the Laplace transformation in both members:

ℒ[y" + y]=ℒ[Sin(2t)]

ℒ[y"]+ℒ[y]=ℒ[Sin(2t)]  

By using the Table of Laplace Transform we get:

ℒ[y"]=s²·ℒ[y]-s·y(0)-y'(0)=s²·Y(s) -2s-1

ℒ[y]=Y(s)

ℒ[Sin(2t)]=\frac{2}{(s^{2}+4)}

We replace the previous data in the equation:

s²·Y(s) -2s-1+Y(s) =\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)-2s-1=\frac{2}{(s^{2}+4)}

(s²+1)·Y(s)=\frac{2}{(s^{2}+4)}+2s+1=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)}

Y(s)=\frac{2+2s(s^{2}+4)+s^{2}+4}{(s^{2}+4)(s^{2}+1)}

Y(s)=\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}

Using partial franction method:

\frac{2s^{3}+s^{2}+8s+6}{(s^{2}+4)(s^{2}+1)}=\frac{As+B}{s^{2}+4} +\frac{Cs+D}{s^{2}+1}

2s^{3}+s^{2}+8s+6=(As+B)(s²+1)+(Cs+D)(s²+4)

2s^{3}+s^{2}+8s+6=s³(A+C)+s²(B+D)+s(A+4C)+(B+4D)

We solve the equation system:

A+C=2

B+D=1

A+4C=8

B+4D=6

The solutions are:

A=0 ; B= -2/3 ; C=2 ; D=5/3

So,

Y(s)=\frac{-\frac{2}{3} }{s^{2}+4} +\frac{2s+\frac{5}{3} }{s^{2}+1}

Y(s)=-\frac{1}{3} \frac{2}{s^{2}+4} +2\frac{s }{s^{2}+1}+\frac{5}{3}\frac{1}{s^{2}+1}

By using the inverse of the Laplace transform:

ℒ⁻¹[Y(s)]=ℒ⁻¹[-\frac{1}{3} \frac{2}{s^{2}+4}]-ℒ⁻¹[2\frac{s }{s^{2}+1}]+ℒ⁻¹[\frac{5}{3}\frac{1}{s^{2}+1}]

y(t)= - \frac{1}{3} Sin(2t)+2 Cos(t)+\frac{5}{3} Sin(t)

3 0
3 years ago
Other questions:
  • PLEASE HELP 15 POINTS AND BRAINLIEST!!!!!!!!!!!!!!!!!!!
    14·2 answers
  • Simplifying exponential expressions. a^5 b^5 c^5
    6·1 answer
  • Judy paid $120.96 for carpet for her room that is 144 ft.² Nathan like the carpet she chose but he wasn't sure it would match th
    8·1 answer
  • this year the winner of the New York Marathon ran the 8 km event in 24 minutes what is the runners unit rate
    7·1 answer
  • Find the value of x (and y, if applicable)
    14·1 answer
  • Which is the correct input-output table for the function f(x) = 3x2 - 1+4?
    12·1 answer
  • Convert the given amount to the given unit
    12·1 answer
  • I need help what is this diameter and range
    14·1 answer
  • 10.
    12·1 answer
  • HELP! WILL GIVE BRAINLEST!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!