150.
You can read the uppermost point on the graph which is pretty much that point.
Answer:
............................
Answer:
The probability that he chooses trees of two different types is 30%.
Step-by-step explanation:
Given that a landscaper is selecting two trees to plant, and he has five to choose from, of which three of the five are deciduous and two are evergreen, to determine what is the probability that he chooses trees of two different types must be performed the following calculation:
3/5 x 2/4 = 0.3
2/5 x 3/4 = 0.3
Therefore, the probability that he chooses trees of two different types is 30%.
Answer:
1.1 yd
Step-by-step explanation:
120 × π/180 = 2π/3
2.3 = r × 2π/3
=> r = 2.3 ÷ 2π/3
=> r ≈ 1.1
Answer
(a) 
(b) 
Step-by-step explanation:
(a)
δ(t)
where δ(t) = unit impulse function
The Laplace transform of function f(t) is given as:

where a = ∞
=> 
where d(t) = δ(t)
=> 
Integrating, we have:
=> 
Inputting the boundary conditions t = a = ∞, t = 0:

(b) 
The Laplace transform of function f(t) is given as:



Integrating, we have:
![F(s) = [\frac{-e^{-(s + 1)t}} {s + 1} - \frac{4e^{-(s + 4)}}{s + 4} - \frac{(3(s + 1)t + 1)e^{-3(s + 1)t})}{9(s + 1)^2}] \left \{ {{a} \atop {0}} \right.](https://tex.z-dn.net/?f=F%28s%29%20%3D%20%5B%5Cfrac%7B-e%5E%7B-%28s%20%2B%201%29t%7D%7D%20%7Bs%20%2B%201%7D%20-%20%5Cfrac%7B4e%5E%7B-%28s%20%2B%204%29%7D%7D%7Bs%20%2B%204%7D%20-%20%5Cfrac%7B%283%28s%20%2B%201%29t%20%2B%201%29e%5E%7B-3%28s%20%2B%201%29t%7D%29%7D%7B9%28s%20%2B%201%29%5E2%7D%5D%20%5Cleft%20%5C%7B%20%7B%7Ba%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
Inputting the boundary condition, t = a = ∞, t = 0:
