You have to add all of your frequency’s together and divide by 6 for the 6 scores. your mean would be 2
Answer:
10
Step-by-step explanation:
The number of tiles in the design is 1 + 2 + 3 + ...
We can model this as an arithmetic series, where the first term is 1 and the common difference is 1. The sum of the first n terms of an arithmetic series is:
S = n/2 (2a₁ + d (n − 1))
Given that a₁ = 1 and d = 1:
S = n/2 (2(1) + n − 1)
S = n/2 (n + 1)
Since S ≤ 60:
n/2 (n + 1) ≤ 60
n (n + 1) ≤ 120
n must be an integer, so from trial and error:
n ≤ 10
Mr. Tong should use 10 tiles in the final row to use the most tiles possible.
Answer:
- 1/3
- y-axis
- (1, -2)
Step-by-step explanation:
The length AC is 3, but the corresponding length FD is 1, so the dilation factor is FD/AC = 1/3.
The reflection is a left/right reflection, so it is across a vertical line. We suspect the only vertical line you are interested in is the y-axis. (It could be reflected across x=1/2, and then the only translation would be downward.)
The above transformations will put C' at (1, 0). Since the corresponding point D is at (2, -2), we know it is C' is translated by (1, -2) to get to D.
C' + translation = D
(1, 0) +(1, -2) = (2, -2)
104 ÷ 5.1 = 20.3921
Nearest tenth 20.4