Answer:
The solution to the system of equations (x, y) = (2, 4) represents the month in which exports and imports were equal. Both were 4 in February.
Step-by-step explanation:
We're not sure what "system of equations" is being referenced here, since no equations are shown or described.
__
Perhaps your "system of equations" is ...
f(x) = some equation
g(x) = some other equation
Then the solution to this system of equation is the pair of values (x, y) that gives ...
y = f(x) = g(x)
If x represents the month number, then the solution can be read from the table:
(x, y) = (2, 4)
This is the month in which exports and imports were equal. Both numbers were 4 in February.
Answer:
89
Step-by-step explanation:
it is basically counting by 2s but rather by 20s.
20, 40,60,80
all you do is add a 9 at the end.
Answer:
0.0838 (8.62%)
Step-by-step explanation:
defining the event G= an out-of-state transaction took place in a gasoline station , then the probability is
P(G) = probability that the transaction is fraudulent * probability that took place in a gasoline station given that is fraudulent + probability that the transaction is not fraudulent * probability that took place in a gasoline station given that is not fraudulent = 0.033 * 0.092 + 0.977 * 0.034 = 0.0362
then we use the theorem of Bayes for conditional probability. Defining also the event F= the transaction is fraudulent , then
P(F/G)=P(F∩G)/P(G) = 0.033 * 0.092 /0.0362 = 0.0838 (8.62%)
where
P(F∩G)= probability that the transaction is fraudulent and took place in a gasoline station
P(F/G)= probability that the transaction is fraudulent given that it took place in a gasoline station