Answer:
a) 81.5%
b) 95%
c) 75%
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 266 days
Standard Deviation, σ = 15 days
We are given that the distribution of length of human pregnancies is a bell shaped distribution that is a normal distribution.
Formula:

a) P(between 236 and 281 days)

b) a) P(last between 236 and 296)

c) If the data is not normally distributed.
Then, according to Chebyshev's theorem, at least
data lies within k standard deviation of mean.
For k = 2

Atleast 75% of data lies within two standard deviation for a non normal data.
Thus, atleast 75% of pregnancies last between 236 and 296 days approximately.
I am a number greater than 40,000 and less than 60,000:
40,000 < n < 60,000
This means that:
n = 10,000n₁ + 1,000n₂ + 100n₃ + 11n₄
And also:
4 ≤ n₁ < 6
0 ≤ n₂ ≤ 9
0 ≤ n₃ ≤ 9
0 ≤ n₄ ≤ 9
My ten thousands digit is 1 less than 3 times the sum of my ones digit and tens digit:
n₁ = 3*2n₄ - 1
n₁ = 6n₄ - 1
This means that:
n = 10,000*(6n₄-1) + 1,000n₂ + 100n₃ + 11n₄
n = 60,000n₄ - 10,000 + 1,000n₂ + 100n₃ + 11n₄
n = 60,011n₄ - 10,000 + 1,000n₂ + 100n₃
<span>My thousands digit is half my hundreds digit, and the sum of those two digits is 9:
n</span>₂ = 1/2 * n₃
<span>
n</span>₂ + n₃ = 9
<span>
Therefore:
n</span>₂ = 9 - n₃
<span>
Therefore:
9 - n</span>₃ = 1/2 * n₃
<span>
9 = 1/2 * n</span>₃ + n₃
<span>
9 = 1.5 * n</span>₃
<span>
Therefore:
n</span>₃ = 6
<span>
If n</span>₃=6, n₂=3.
<span>
This means that:
</span>n = 60,011n₄ - 10,000 + 1,000*3 + 100*6
n = 60,011n₄ - 10,000 + 3,000 + 600
n = 60,011n₄ - 6,400
Therefore:
0<n₄<2, so n₄=1.
If n₄=1:
n = 60,011 - 6,400
n = 53,611
Answer:
53,611
Answer:
$1.20
Step-by-step explanation:
9.20 x 4 = 36.8
7.60 x 5 = 38
38 - 36.8 = 1.20
C.) 1600 pi cm3
When you do 10^2 you get 100 and you multiply that by the height so 16 and you get 1600.
Answer:
80,000
hope this helps
have a good day :)
Step-by-step explanation: