MgBr2(aq) is an ionic compound which will have the releasing of 2 Br⁻ ions ions in water for every molecule of MgBr2 that dissolves.
MgBr2(s) --> Mg+(aq) + 2 Br⁻(aq)
[Br⁻] = 0.51 mol MgBr2/1L × 2 mol Br⁻ / 1 mol MgBr2 = 1.0 M
The answer to this question is [Br⁻] = 1.0 M
Answer:
0.7g of HCl
Explanation:
First, let us write a balanced equation for the reaction between HCl and Al(OH)3.
This is illustrated below:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
Next, let us obtain the masses of Al(OH)3 and HCl that reacted together according to the equation. This can be achieved as shown below:
Molar Mass of Al(OH)3 = 27 + 3(16+1)
= 27 + 3(17) = 27 + 51 = 78g/mol.
Molar Mass of HCl = 1 + 35.5 = 36.5g/mol
Mass of HCl from the balanced equation = 3 x 36.5 = 109.5g
Now we can obtain the mass of HCl that would react with 0.5g of Al(OH)3. This can be achieved as follow:
Al(OH)3 + 3HCl —> AlCl3 + 3H2O
From the equation above,
78g of Al(OH)3 reacted with 109.5g of HCl.
Therefore, 0.5g of Al(OH)3 will react with = (0.5 x 109.5)/78 = 0.7g of HCl
B
When frequency increases, as does the energy, but wavelength decreases. It also works vise versa; if wavelength were to increase, its frequency and energy will decrease.
Answer:
Whether you get the metal or hydrogen during electrolysis depends on the position of the metal in the reactivity series: the metal will be produced if it is less reactive than hydrogen. hydrogen will be produced if the metal is more reactive than hydrogen.
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>