<h2>Question:- </h2>
A solution has a pH of 5.4, the determination of [H+].
<h2>Given :- </h2>
- pH:- 5.4
- pH = - log[H+]
<h2>To find :- concentration of H+</h2>
<h2>Answer:- Antilog(-5.4) or 4× 10-⁶</h2>
<h2>Explanation:- </h2><h3>Formula:- pH = -log H+ </h3>
Take negative to other side
-pH = log H+
multiple Antilog on both side
(Antilog and log cancel each other )
Antilog (-pH) = [ H+ ]
New Formula :- Antilog (-pH) = [+H]
Now put the values of pH in new formula
Antilog (-5.4) = [+H]
we can write -5.4 as (-6+0.6) just to solve Antilog
Antilog ( -6+0.6 ) = [+H]
Antilog (-6) × Antilog (0.6) = [+H]

put the value in equation
![{10}^{ - 6} \times 4 = [H+] \\ 4 \times {10}^{ - 6} = [H+]](https://tex.z-dn.net/?f=%20%7B10%7D%5E%7B%20-%206%7D%20%20%20%5Ctimes%204%20%3D%20%5BH%2B%5D%20%5C%5C%204%20%5Ctimes%20%20%20%7B10%7D%5E%7B%20-%206%7D%20%20%3D%20%5BH%2B%5D)
This is false because males have 1 X and 1 Y chromosome. It's females who have 2 X chromosomes. So, it's false.
Answer:
A gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure of 32.5 kPa.
<u>The pressure for oxygen is 3 kPa</u>
Explanation:
According to Dalton's Law of Partial Pressure total exerted by the mixture of non-reacting gases is equal to sum of the partial pressure of each gas.

So,
For , a gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure:




Insert the values in :



The masses of CO and CO2 are 90.55g and 100−90.55=9.45 g respectively.
<h3>Total mass.</h3>
Let the mixture has 100g as total mass.
The number of moles of CO is 2890.55=3.234.
The number of moles of CO2 is 449.45=0.215.
The mole fraction of CO is 3.234+0.2153.234=0.938.
The mole fraction of CO2 is 1−0.938=0.062.
The partial pressure of CO is the product of the mole fraction of CO and the total pressure.
It is 0.938×1=0.938 atm.
The partial pressure of carbon dioxide is 0.062×1=0.042 atm.
The expression for the equilibrium constant is:
Kp=PCO2PCO2=0.062(0.938)2=14.19
Δng=2−1=1
Kc=Kp(RT)−Δn=14.19×(0.0821×1127)−1=0.153.
To learn more about equilibrium constant visit the link
brainly.com/question/15118952
#SPJ4