Answer:
the solution of the system is:
x = 1 and y = 2.
Step-by-step explanation:
I suppose that we want to solve the equation:
-6*x + 6*y = 6
6*x + 3*y = 12
To solve this, we first need to isolate one of the variables in one of the equations.
Let's isolate y in the first equation:
6*y = 6 + 6*x
y = (6 + 6*x)/6
y = 6/6 + (6*x)/6
y = 1 + x
Now we can replace this in the other equation:
6*x + 3*(1 + x) = 12
6*x + 3 + 3*x = 12
9*x + 3 = 12
9*x = 12 - 3 = 9
x = 9/9 = 1
Now that we know that x = 1, we can replace this in the equation "y = 1 + x" to find the value of y.
y = 1 + (1) = 2
Then the solution of the system is:
x = 1 and y = 2.
Answer:
yebhrhrbrnrjjrjrjrhhthrjthhthththhththththhthrhththhtyhhrhrhrhhr
Answer:
t as a function of height h is t = √600 - h/16
The time to reach a height of 50 feet is 5.86 minutes
Step-by-step explanation:
Function for height is h(t) = 600 - 16t²
where t = time lapsed in seconds after an object is dropped from height of 600 feet
t as a function of height h
replacing the function with variable h
h = 600 - 16t²
Solving for t
Subtracting 600 from both side
h - 600 = -16t²
Divide through by -16
600 - h/ 16 = t²
Take square root of both sides
√600 - h/16 = t
Therefore, t = √600 - h/16
Time to reach height 50 feet
t = √600 - h/16
substituting h = 50 in the equation
t = √600 - 50/16
t = √550/16
t= 34.375
t = 5.86 minutes
Answer:
The half-life of the radioactive substance is 135.9 hours.
Step-by-step explanation:
The rate of decay is proportional to the amount of the substance present at time t
This means that the amount of the substance can be modeled by the following differential equation:

Which has the following solution:

In which Q(t) is the amount after t hours, Q(0) is the initial amount and r is the decay rate.
After 6 hours the mass had decreased by 3%.
This means that
. We use this to find r.







So

Determine the half-life of the radioactive substance.
This is t for which Q(t) = 0.5Q(0). So







The half-life of the radioactive substance is 135.9 hours.