Answer:
The slope of the line that contains diagonal OE will be = -3/2
Step-by-step explanation:
We know the slope-intercept form of the line equation
y = mx+b
Where m is the slope and b is the y-intercept
Given the equation of the line that contains diagonal HM is y = 2/3 x + 7
y = 2/3 x + 7
comparing the equation with the slope-intercept form of the line equation
y = mx+b
Thus, slope = m = 2/3
- We know that the diagonals are perpendicular bisectors of each other.
As we have to determine the slope of the line that contains diagonal OE.
As the slope of the line that contains diagonal HM = 2/3
We also know that a line perpendicular to another line contains a slope that is the negative reciprocal of the slope of the other line.
Therefore, the slope of the line that contains diagonal
OE will be = -1/m = -1/(2/3) = -3/2
Hence, the slope of the line that contains diagonal OE will be = -3/2
Answer:
A perpendicular bisector of a line segment is a line segment perpendicular to and passing through the midpoint of (left figure). The perpendicular bisector of a line segment can be constructed using a compass by drawing circles centered at and with radius and connecting their two intersections.
20( -1.5r + 0.75)
Multiply everything by 20
= -30r + 15
After every month's withdrawals, 4/5 of the original amount at the start of the month will remain. The amount at the start of every month will change. Thus:
an = 4/5 (an-1) ; where a1 = 500.
Answer:
14.4
Step-by-step explanation:
You only move one space to the left since it is only one place to the lest with the decimal number .6
*Hope this helps*