The answer would be 8.51m if you add all together
Let Q be the point (a, b). Since the midpoint of P (2, 3) and Q (a, b) is (4, 6), we have
(2 + a)/2 = 4
(3 + b)/2 = 6
Solve for a and b :
(2 + a)/2 = 4
2 + a = 8
a = 6
(3 + b)/2 = 6
3 + b = 12
b = 9
So the coordinates of Q are (6, 9).
Answer:
<u>H</u><u>e</u><u>y</u><u> </u><u>M</u><u>a</u><u>t</u><u>e</u><u>!</u><u> </u><u>H</u><u>e</u><u>r</u><u>e</u><u>'</u><u>s</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u><u>.</u>
Step-by-step explanation:
<em><u>One packet of biscuits requires 2½ cups of flour = \frac{5}{2}25</u></em>
<em><u>One packet of biscuits requires 1 \times \frac{2}{3}1×32</u></em>
<em><u>One packet of biscuits requires 1 \times \frac{2}{3}1×32cups of sugar. = \frac{5}{3}35</u></em>
<em><u>Total ingradiants for one packet of biscuits =</u></em>
<em><u>Total ingradiants for one packet of biscuits =( \frac{5}{2} + \frac{5}{3} ) = \frac{15 + 10}{6} = \frac{25}{6}(25+35)=615+10=625</u></em>
<em><u>Then, total quantity of both ingredients used in 10 such packets of biscuits =</u></em>
<em><u>Then, total quantity of both ingredients used in 10 such packets of biscuits =10 \times ( \frac{25}{6} ) = 5 \times ( \frac{25}{3} ) = \frac{125}{3} = 41 \times \frac{2}{3}10×(625)=5×(325)=3125=41×32</u></em>
Hope it helped you!