Answer:
Multiplication property of equality and subtraction property of equality
Step-by-step explanation:
Just using the signs to know what you can do to get your answer (also PEMDAS)
At zero, the value of the function is zero. It then rises to its maximum value, then falls to zero and then to its minimum value and then back to zero.
So, the graph follows the pattern of Sine Function: <span>(B. zero-max-zero-min-zero) starting at the origin. This suggest the coefficient a of the sine function is positive.
Maximum value of the function as seen from the graph is 5, and the minimum value is -5. So the amplitude of the function is 5 and the vertical translation k = 0 as the graph rises equally above and below x-axis.</span>
It seems that some the work is already here, but I'd be glad to!! So for #3 which is 9x^2+15x, we can factor out both a 3 and an x (3x) so we know that 3x * 3x =9x^2 and 3x * 5 = 15x so once we take the 3x out of the equation, we are left with 3x(3x+5) and that's as far as you can factor.
For #4, we see that the common factor is 10m because 10m * 2n = 20mn and 10m * 3 = 30m so once we take 10m out of the original, it becomes 10m(2n-3)
For #5, this one the common factor is 4xy because 4xy * 2xy=8x^2y^2 and 4xy*x= 4x^2y and 4xy*3=12xy so once we take the 4xy out of the equation, it becomes 4xy(2xy-x-3)
Hope this helps!
Answer: charging in premiums in exchange for insurance coverage???
Step-by-step explanation:
Answer:
The maximum height of the prism is 
Step-by-step explanation:
Let
x------> the height of the prism
we know that
the area of the rectangular base of the prism is equal to


so
-------> inequality A
------> equation B
-----> equation C
Substitute equation B in equation C

------> equation D
Substitute equation B and equation D in the inequality A
-------> using a graphing tool to solve the inequality
The solution for x is the interval---------->![[0,12]](https://tex.z-dn.net/?f=%5B0%2C12%5D)
see the attached figure
but remember that
The width of the base must be
meters less than the height of the prism
so
the solution for x is the interval ------> ![(9,12]](https://tex.z-dn.net/?f=%289%2C12%5D)
The maximum height of the prism is 