Answer:
0.385 J/g°C
Explanation:
Using the following formula, the specific heat of an elemental substance can be calculated:
Q = m × c × ∆T
Where;
Q = quantity of heat (J)
m = mass (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
Based on the given information, Q = 1375J, m = 50g, initial temperature = 22.8°C, final temperature = 94.2°C, c =?
Q = m × c × ∆T
1375 = 50 × c × (94.2 - 22.8°C)
1375 = 50 × c × 71.4
1375 = 3570c
c = 1375/3570
c = 0.3851
c = 0.385 J/g°C
1. Ur graph should have 2 vertical lines || , of equal height at mass 13 and 15.
2. One, because you have the mass, which in this case is 13 and the other 15, which has the same height. So it must be the isotope. By definition, an isotope has the same number of protons, but different number of neutrons.
3. to solve for fractional abundance, Let x = fraction of element: "I"-13
then fraction of "I"-15 must be 1-x
so you have: 13x + (15<span>)(1-x) = 13
solve for x.</span>
The resistance of the appliance is 64.1 Ω.
<u>Explanation:</u>
As per the Ohm's law, which states that the electric current is in direct proportion to the voltage and is in inverse proportion to the resistance. It is given by the expression as,
V = IR
Where V is the voltage (V) = 150.0 V
I is the current (amps) = 2.34 amps
R is the resistance (ohm) or Ω = ?
Now we have to rearrange the equation to get the resistance as,

Now we have to plug in the values as,

= 64.1 Ω
So the resistance of the appliance is 64.1 Ω.
Carbon dioxide is the main gas