The answer to your question is the third option "1.079 kg/m<span>3
</span>"
Answer:
i. Molar mass of glucose = 180 g/mol
ii. Amount of glucose = 0.5 mole
Explanation:
<em>The volume of the glucose solution to be prepared</em> = 500 
<em>Molarity of the glucose solution to be prepared</em> = 1 M
i. Molar mass of glucose (
) = (6 × 12) + (12 × 1) + (6 × 16) = 180 g/mol
ii.<em> mole = molarity x volume</em>. Hence;
amount (in moles) of the glucose solution to be prepared
= 1 x 500/1000 = 0.5 mole
The element symbol in chemistry comprises atomic number and mass number.
Atomic number is written on the top of element and mass number is written at the bottom.
For eg:
If Y is an element that is having atomic number a and mass number x. Then its denotion will be:
ᵃYₓ.
So here ⁹F₁₈.₉₉
Here 18.99 will denote mass number while 9 will denote atomic number.
Answer:

Explanation:
Given: Entropy of surrounding: ΔSsurr = ?
Temperature: T= 355 K
The change in enthalpy of reaction: ΔH = -114 kJ
Pressure: P = constant
As we know, ΔH = -114 kJ ⇒ negative
Therefore, the given reaction is an exothermic reaction
Therefore, Entropy of surrounding at <em>constant pressure</em> is given by,


<u><em>In the given reaction:</em></u>
2NO(g) + O₂(g) → 2NO₂(g)
As, the number of moles of gaseous products is less than the number of moles of gaseous reactants.
As we know, <em>for a spontaneous process, that the total entropy should be positive.</em>
<u>Therefore, at the given temperature,</u>
- if
then the given reaction is spontaneous
- if
then the given reaction is non-spontaneous