1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex17521 [72]
3 years ago
11

Evaluate 7x - (2x)2 + x 3 for x = -2.

Mathematics
1 answer:
V125BC [204]3 years ago
7 0

7x - (2x)2 +  {x}^{3}

7x - 4x +  {x}^{3}

3x +  {x}^{3}

3( - 2) +  { (- 2)}^{3}

- 6 +  - 8

- 14

You might be interested in
Urgent help neededddd
Wewaii [24]

Answer:

176

Step-by-step explanation:

V=\frac{1}{3}\times 8 \times 6 \times 11=176 \:cm^3

8 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
The triangle below is isosceles. Find the length of side x in simplest radical form with
BigorU [14]
That all cause u the length of the time

6 0
2 years ago
Read 2 more answers
Solve 1/4 divided by 3
zysi [14]

The anwser is 0.083 a bunch of threes follow but the aren't important all you need to do is round which that should be rounded enough.

6 0
3 years ago
Read 2 more answers
Which variable is ordinal?​
Leviafan [203]

Answer:

Categorical variable

Step-by-step explanation:

An ordinal variable is a categorical variable for which the possible values are ordered. Please mark me as brainliest.

6 0
2 years ago
Other questions:
  • Beethoven wrote 9 symphonies and mozart wrote 27 piano concertos. if a university radio station announcer wishes to play first a
    8·1 answer
  • If a number’s composite form is 343, which of the following shows its exponential form as a product of prime numbers? A.7 · 49 B
    10·1 answer
  • A coin and a regular die are tossed. Find each probability.
    5·2 answers
  • What is 4 1/2 divided by 7 1/3 and multiplied by 1 3/5?
    12·1 answer
  • How do you subtract 11/48 - 5/32​
    5·2 answers
  • 1. Use the number line to find the coordinate of the midpoint of segment<br> BD.
    15·1 answer
  • 4/16 in simplest form
    11·2 answers
  • SoIve: 12 = -4(-6x - 3) <br><br><br> x = -0.625<br> x = -0.375<br> x = -2<br> x = 0
    6·1 answer
  • Geometry pls help
    12·1 answer
  • A box of pens cost $6.50 and a box of pencils is $4.00. Jane gets 15% commission of each box of pencils sold. Calculate Jane's c
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!