Answer:
0.89736
Step-by-step explanation:
We solve this question using z score formula
Z score = x - μ/σ
x = raw score
μ = population mean
σ = population standard deviation
Hence,
x = 258, μ = 220, σ = 30
Z = 258 - 220/30
=1.26667
Probability value from Z-Table:
P(x<258) = 0.89736
Therefore, the probability that his weights is less than 258 kg is 0.89736
I just need point tbh so thanks !!
Answer:
SAS theorem
Step-by-step explanation:
Given
![\square ABCD](https://tex.z-dn.net/?f=%5Csquare%20ABCD)
![\[ \lvert \[ \lvert AB =\[ \lvert \[ \lvert CD](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20AB%20%3D%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20CD)
![\angle BAC = \angle DCA](https://tex.z-dn.net/?f=%5Cangle%20BAC%20%3D%20%5Cangle%20%20DCA)
Required
Which theorem shows △ABE ≅ △CDE.
From the question, we understand that:
AC and BD intersects at E.
This implies that:
![\[ \lvert \[ \lvert AE = \[ \lvert \[ \lvert EC](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20AE%20%3D%20%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20EC)
and
![\[ \lvert \[ \lvert BE = \[ \lvert \[ \lvert ED](https://tex.z-dn.net/?f=%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20BE%20%3D%20%5C%5B%20%5Clvert%20%5C%5B%20%5Clvert%20ED)
So, the congruent sides and angles of △ABE and △CDE are:
---- S
---- A
or
--- S
<em>Hence, the theorem that compares both triangles is the SAS theorem</em>
Can you post the answer choices please ??