To find equivalent inequalities you have to work the inequality given.
The first step is transpose on of sides to have an expression in one side and zero in the other side:
x - 6 x + 7
--------- ≥ --------
x + 5 x + 3
=>
x - 6 x + 7
--------- - -------- ≥ 0
x + 5 x + 3
=>
(x - 6) (x + 3) - (x + 7) (x + 5)
--------------------------------------- ≥ 0
(x + 5) (x + 3)
=>
x^2 - 3x - 18 - x^2 - 12x - 35
--------------------------------------- ≥ 0
(x + 5) (x + 3)
15x + 53
- ------------------- ≥ 0
(x + 5) (x + 3)
That is an equivalent inequality. Sure you can arrange it to find many other equivalent inequalities. That is why you should include the list of choices. Anyway from this point it should be pretty straigth to arrange the terms until making the equivalent as per the options.
Answer:
45h+ 4
Step-by-step explanation:
you got to divide but the expression is 45h+4
The only way to make a decimal out of either of those numbers is to write a decimal point with some zeros after it.
500,000 = 500,000.000
60,000,000 = 60,000,000.00000
etc.
Answer:
The probability that 75% or more of the women in the sample have been on a diet is 0.037.
Step-by-step explanation:
Let <em>X</em> = number of college women on a diet.
The probability of a woman being on diet is, P (X) = <em>p</em> = 0.70.
The sample of women selected is, <em>n</em> = 267.
The random variable thus follows a Binomial distribution with parameters <em>n</em> = 267 and <em>p</em> = 0.70.
As the sample size is large (n > 30), according to the Central limit theorem the sampling distribution of sample proportions (
) follows a Normal distribution.
The mean of this distribution is:

The standard deviation of this distribution is: 
Compute the probability that 75% or more of the women in the sample have been on a diet as follows:

**Use the <em>z</em>-table for the probability.

Thus, the probability that 75% or more of the women in the sample have been on a diet is 0.037.
Answer:
end of third year = 1,200*(1.02)^3 = 1,273.45 plus
end of second year = 1,200*(1.02)^2 = 1,248.48 plus
end of first year = 1,200*(1.02) = 1,224.00
Total = 3,745.9
Step-by-step explanation: