Answer:
-4
Step-by-step explanation:
Answer:
![\sqrt[3]{3}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B3%7D)
Step-by-step explanation:
We are required to simplify the quotient: ![\dfrac{\sqrt[3]{60} }{\sqrt[3]{20}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B60%7D%20%7D%7B%5Csqrt%5B3%5D%7B20%7D%7D)
Since the <u>numerator and denominator both have the same root index</u>, we can therefore say:
![\dfrac{\sqrt[3]{60} }{\sqrt[3]{20}} =\sqrt[3]{\dfrac{60} {20}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B60%7D%20%7D%7B%5Csqrt%5B3%5D%7B20%7D%7D%20%3D%5Csqrt%5B3%5D%7B%5Cdfrac%7B60%7D%20%7B20%7D%7D)
![=\sqrt[3]{3}](https://tex.z-dn.net/?f=%3D%5Csqrt%5B3%5D%7B3%7D)
The simplified form of the given quotient is
.
You haven't provided the required roots, but I can tell you how to do this kind of exercises in general.
If the
coefficient is 1, i.e. the equation is written like
, then you can say the following about the coefficients b and c:
is the opposite of the sum of the roots
is the multiplication of the roots.
So, for example, if we want an equation whose roots are 4 and -2, we have:
So, the equation is 
If your roots are rational, you can work like this: suppose you want an equation with roots 3/4 and 1/2. You have:
And so the equation is

In order to have integer coefficients, you can multiply both sides of the equation by 8:

Answer:
1. x = 10
2. x = 4
Step-by-step explanation:
I use the angle ABC method:
AB² + AC² = BC²
6² + 8² = x²
x = 10
AB² + AC² = BC²
3² + x² = 5²
x = 4
<em>H</em><em>O</em><em>P</em><em>E</em><em> </em><em>T</em><em>H</em><em>I</em><em>S</em><em> </em><em>H</em><em>E</em><em>L</em><em>P</em><em>S</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>H</em><em>A</em><em>V</em><em>E</em><em> </em><em>A</em><em> </em><em>N</em><em>I</em><em>C</em><em>E</em><em> </em><em>D</em><em>A</em><em>Y</em><em> </em><em><</em><em>3</em>
Answer:
900m
Step-by-step explanation: if one is 300m then do 300m x 3 =900m.
Hoped this help