The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength. ... The frequency is the same as that of the source and is the number of waves that pass a point per unit time.
To solve this problem it is necessary to apply the kinematic equations of motion and Hook's law.
By Hook's law we know that force is defined as,

Where,
k = spring constant
x = Displacement change
PART A) For the case of the spring constant we can use the above equation and clear k so that




Therefore the spring constant for each one is 11876.92/2 = 5933.46N/m
PART B) In the case of speed we can obtain it through the period, which is given by

Re-arrange to find \omega,



Then through angular kinematic equations where angular velocity is given as a function of mass and spring constant we have to




Therefore the mass of the trailer is 4093.55Kg
PART C) The frequency by definition is inversely to the period therefore



Therefore the frequency of the oscillation is 0.4672 Hz
PART D) The time it takes to make the route 10 times would be 10 times the period, that is



Therefore the total time it takes for the trailer to bounce up and down 10 times is 21.4s
Answer:
The force pulling the roller along the ground is 128.55 N
Explanation:
A force of 200 N acting at an angle of 50° with the ground level
This force is pulled a garden roller
We need to find the force pulling the roller along the ground
The force that pulling the roller along the ground is the horizontal
component of the force acting
→ The force acting is 200 N at direction 50° with ground (horizontal)
→ The horizontal component = F cosФ
→ F = 200 N , Ф = 50
→ The horizontal component = 200 cos(50) = 128.55 N
128.55 N is the horizontal component of the force that pulling the
roller along the ground
<em>The force pulling the roller along the ground is 128.55 N</em>