Answer:
The frictional force
6.446 N
The acceleration of the block a = 6.04 
Explanation:
Mass of the block = 3.9 kg
°
= 0.22
(a). The frictional force is given by


3.9 × 9.81 × 
29.3 N
Therefore the frictional force
0.22 × 29.3
6.446 N
(b). Block acceleration is given by

F = 30 N
= 6.446 N
= 30 - 6.446
= 23.554 N
The net force acting on the block is given by

23.554 = 3.9 × a
a = 6.04 
This is the acceleration of the block.
Answer:
4
Explanation:
the temperature at and above which vapor of the substance cannot be liquefied, no matter how much pressure is applied.
Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
<span>Answer: Force = 81.6 N
Explanation:
According to Newton's Second law:
F = ma --- (1)
Where F = Force = ?
m = Mass = 68 kg
a = Acceleration = 1.2 m/s^2
Plug in the values in (1):
(1) => F = 68 * 1.2
F = 81.6 N (The force needed to accelerate the skier at a rate of 1.2 m/s^2)</span>
The chemical reaction causes electricity to flow through the terminals to the load attached. Some of the acid in the battery remains on the plates as it flows through. When the battery is recharged the acid is returned to the liquid solution to provide more power later.