Answer:
Signal transduction pathways
Explanation:
Plant hormones act by directly affecting the activities of signal transduction pathways.
Signal transduction pathways are involved in the transfer of signals from outside of the cell to the inside of the cell for the regulation of various cellular activities. For this, the extracellular signalling molecules bind to the receptors that are located on the cell membrane. After their binding due to some change in the receptor molecule, a signal is triggered in to the cell and thus information from outside of the cell is transferred to the inside of the cell through these transduction pathways.
Plant hormones affect these pathways and as a result membranes, enzymes, and genes are also influenced by the plant hormones.
Mmmmmm mercury sexiest planet thanks for the pic
Answer:
If an inhibitory synapse fires at the same time and at the same distance from the initial segment as an excitatory synapse of the same intensity there will be no changes in the potential in the firing zone.
Explanation:
Under normal conditions, the transmembrane potential depends on the ionic charges present in the intracellular and extracellular spaces. The extracellular space load is usually positive and in the cytoplasm is negative.
- <u>Depolarization</u> occurs by opening ion channels that allow sodium to enter the cell, making the intracellular space more positive.
- An opening of potassium channels releases this ion to the extracellular space, leading to <u>hyperpolarization</u>.
An excitatory synapse is one capable of depolarizing a cell and boosting the production of action potential, provided it is capable of reaching the threshold of said potential.
On the other hand, an inhibitory synapse is able to hyperpolarize the cell membrane and prevent an action potential from originating, so that they can inhibit the action of an excitatory synapse.
The interaction between two synapses, one excitatory and one inhibitory, -called synapse summation- will depend on the strength that each of them possesses. In this case, the intensity of both synapses being the same, there will be no changes in the membrane potential in the firing zone.
Learn more:
Excitatory and inhibitory postsynaptic potentials brainly.com/question/3521553
Answer:
PHOTOSYNTHESIS is a process in which <em><u>green </u></em><em><u>plants </u></em>and other certain organisms convert water, carbon dioxide and other minerals into energy rich molecules and oxygen using the light energy.
hope it helps
have a nice day
The answer is the T tubules.