The balanced equation for the reaction between NaOH and aspirin is as follows;
NaOH + C₉H₈O₄ --> C₉H₇O₄Na + H₂O
stoichiometry of NaOH to C₉H₈O₄ is 1:1
The number of NaOH moles reacted - 0.1002 M / 1000 mL/L x 10.00 mL
Number of NaOH moles - 0.001002 mol
Therefore number of moles of aspirin - 0.001002 mol
Mass of aspirin reacted - 0.001002 mol x 180.2 g/mol = 0.18 g
However the mass of the aspirin sample is 0.132 g but 0.18 g of aspirin has reacted, therefore this question is not correct.
Answer:
9.6 mol AgCl2
Explanation:
You have to use Avogadro's number: 6.023 x 10^23
5.78 x 10^24 molecules (1 mol AgCl2/ 6.023 x 10^23 molecules) =9.6 mol AgCl2
Answer:
Fe(s) → Fe²⁺(aq) + 2e⁻ OXIDATION
Mg²⁺(aq) + 2e⁻ → Mg(s) REDUCTION
Explanation:
The redox reaction is: MgCl₂(aq) + Fe(s) → FeCl₂(aq) + Mg(s)
We need to know that elements in ground state have 0 as the oxidation state.
Iron in the reactants, and Mg in the products
In the magnessium chloride, the Mg acts with+2, so the oxidation state has decreased → REDUCTION
In the iron(II) chloride, the Fe acts with +2, so the oxidation statehas increased → OXIDATION
The half reactions are:
Fe(s) → Fe²⁺(aq) + 2e⁻ OXIDATION
Mg²⁺(aq) + 2e⁻ → Mg(s) REDUCTION
A decomposition reaction<span> is a type of chemical </span>reaction<span> in which a single compound breaks down into two or more elements or new compounds. These </span>reactions<span> often involve an energy source such as heat, light, or electricity that breaks apart the bonds of compounds. so it is a decomposition reaction because the silver chloride breaks down into silver and chlorine</span>
Electrons is what defines which element appears in which block.